128 research outputs found

    The study on the antioxidant activity of polysaccharides isolated from Polygonatum odoratum (Mill.) Druce

    Get PDF
    The polysaccharides isolated from Polygonatum odoratum (Mill.) Druce (POPs) by water extraction, after precipitation with ethanol were purified through deproteinization, decolorization, dialysis, and column chromatography leading to a purified polysaccharide (POPs-I) content of 90.7 %. The scavenging of oxygen free radicals and inhibition of lipid peroxidation (LPO) by POPs-I were analyzed using a colorimetric method. The results showed that the hydroxyl radical scavenging ability of the polysaccharides was weaker than that of benzoic acid, but stronger than those of ascorbic acid and mannitol, and that the superoxide anion radical scavenging ability was inferior to those of all three. When the concentration was higher than 1.0 mg/mL, the POPs-I could inhibit LPO by superoxide anion radicals to a certain degree. Therefore, this work suggests that POPs-I are potential antioxidant agents in medicine and functional food

    Numerical simulation of the effect of flange radial length on strain growth of cylindrical containment vessels

    Get PDF
    In this paper, the effect of radial length of flange on the strain growth in the elastic range of the cylindrical shell is studied by numerical simulation using LS-DYNA. It is found that the influence of the flange length on the first strain peak is small. As the radial length of the flange increases, the bending disturbance of the various frequencies of the cylindrical shell is excited which makes the linear modal coupling response is enhanced, so that the strain growth factor is increased. When more high-frequency parts are introduced into the strain response, the strain growth time will be correspondingly shortened. Therefore, it is recommended to use a flange as small as possible when designing the explosion containment vessel

    A Metabonomic Approach to Analyze the Dexamethasone-Induced Cleft Palate in Mice

    Get PDF
    Mice models are an important way to understand the relation between the fetus with cleft palate and changes of maternal biofluid. This paper aims to develop a metabonomics approach to analyze dexamethasone-induced cleft palate in pregnant C57BL/6J mice and to study the relationship between the change of endogenous small molecular metabolites in maternal plasma and the incidence of cleft palate. To do so, pregnant mice were randomly divided into two groups. The one group was injected with dexamethasone. On E17.5th day, the incident rates of cleft palate from embryos in two groups were calculated. The 1H-NMR spectra from the metabolites in plasma in two groups was collected at same time. Then the data were analyzed using metabonomics methods (PCA and SIMCA). The results showed that the data from the two groups displayed distinctive characters, and the incidence of cleft palate were significantly different (P < .005). To conclude, this study demonstrates that the metabonomics approach is a powerful and effective method in detecting the abnormal metabolites from mother in the earlier period of embryos, and supports the idea that a change from dexamethasone induced in maternal metabolites plays an important role in the incidence of cleft palate

    Experimental study on ground vibration of blasting the boulder with tandem shaped charging warhead

    Get PDF
    Hazardous effects of blasting the boulder with the new breaking-blasting equipment-tandem shaped charging warhead are mainly air shock wave, seismic wave and blast slung shot. Blast-induced ground vibration is one of the inevitable effects and may cause substantial damage to nearby structures. Started from the formation process and mechanism of ground vibration to study the seismic wave, the research attained curve of vibration velocity of monitoring points by TC-4850 and carried out differential and fast Fourier transform analysis of the curve. And the results concluded that blasting vibration with tandem shaped charging warhead mainly comes from prime charge; the attenuation law can be predicted by Sadev’s Formula. Explosion vibration frequency range is 20-150 Hz, while with the increase of distance from the blasting center, blasting vibration intensity attenuates rapidly, vibration duration increases and vibration frequency gradually reduces. Compared with general rock blasting, its attenuation rate of blasting vibration is faster with higher frequency and smaller impact on buildings, but the harm effects should not be ignored for the special application environment

    Development of ε-poly(L-lysine) carbon dots-modified magnetic nanoparticles and their applications as novel antibacterial agents

    Get PDF
    Magnetic nanoparticles (MNPs) are widely applied in antibacterial therapy owing to their distinct nanoscale structure, intrinsic peroxidase-like activities, and magnetic behavior. However, some deficiencies, such as the tendency to aggregate in water, unsatisfactory biocompatibility, and limited antibacterial effect, hindered their further clinical applications. Surface modification of MNPs is one of the main strategies to improve their (bio)physicochemical properties and enhance biological functions. Herein, antibacterial ε-poly (L-lysine) carbon dots (PL-CDs) modified MNPs (CMNPs) were synthesized to investigate their performance in eliminating pathogenic bacteria. It was found that the PL-CDs were successfully loaded on the surface of MNPs by detecting their morphology, surface charges, functional groups, and other physicochemical properties. The positively charged CMNPs show superparamagnetic properties and are well dispersed in water. Furthermore, bacterial experiments indicate that the CMNPs exhibited highly effective antimicrobial properties against Staphylococcus aureus. Notably, the in vitro cellular assays show that CMNPs have favorable cytocompatibility. Thus, CMNPs acting as novel smart nanomaterials could offer great potential for the clinical treatment of bacterial infections
    corecore