1,136 research outputs found

    Corticomuscular coherence analysis on the static and dynamic tasks of hand movement

    Get PDF
    The synchronization between cortical motor and muscular activity can be revealed by corticomuscular coherence (CMC). This paper designed two neuromuscular activity paradigms of hand movement, i.e. static gripping task and dynamic finger moving task. The electroencephalography (EEG) from C3 and C4 channels and the surface electromyography (sEMG) from the flexor digitorum superficialis were collected simultaneously from 4 male and 4 female right-handed healthy young subjects. For the static griping task, CMCs during low-level forces under 4%, 8%, and 16% MVC (Maximal Voluntary Contraction) were investigated by using magnitude squared coherence calculated from EEGs and sEMGs. For the dynamic finger moving task, the time-frequency domain analysis was used to process dynamic data of temporary action in a period of 2 seconds and get the latency of the maximum CMC. The results of this study indicated that the force increasing within the low-level range in static task is associated with the enhanced CMC. The maximum amplitude of CMC occurred about 0.3–0.5s after the onset of hand movement. Subjects showed significant CMC performance both in static and dynamic task of hand movement.published_or_final_versio

    Partial forming method of the nc machining of the rotary burs

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Photoluminescence study on coarsening of self-assembled InAlAs quantum dots on GaAs (001)

    Get PDF
    Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image

    Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions

    Full text link
    We report on a search for metastable positively and negatively charged states of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864. We have sampled approximately six billion 10% most central Au+Pb interactions and have observed no strangelet states (baryon number A < 100 droplets of strange quark matter). We thus set upper limits on the production of these exotic states at the level of 1-6 x 10^{-8} per central collision. These limits are the best and most model independent for this colliding system. We discuss the implications of our results on strangelet production mechanisms, and also on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover memorial edition

    Novel methods by using non-vacuum insulated tubing to extend the lifetime of the tubing

    Get PDF
    The analysis of the failure mechanics, namely hydrogen permeation of vacuum insulated tubing (VIT), indicated that the failure of VIT could be decreased but could not be avoided. To solve this problem, some measures by using non-vacuum materials were proposed and analyzed in this paper. The results show that to fill the tubing with foam-glass beads or high pressure argon may lead to a good performance

    Strain induced exciton fine-structure splitting and shift in bent ZnO microwires

    Get PDF
    Lattice strain is a useful and economic way to tune the device performance and is commonly present in nanostructures. Here, we investigated for the first time the exciton spectra evolution in bent ZnO microwires along the radial direction via high spatial/energy resolution cathodeluminescence spectroscopy at 5.5 K. Our experiments show that the exciton peak splits into multi fine peaks towards the compressive part while retains one peak in the tensile part and the emission peak displays a continuous blue-shift from tensile to compressive edges. In combination with first-principles calculations, we show that the observed NBE emission splitting is due to the valence band splitting and the absence of peak splitting in the tensile part maybe due to the highly localized holes in the A band and the carrier density distribution across the microwire. Our studies may pave the way to design nanophotonic and electronic devices using bent ZnO nanowires

    HIV-Infected Former Plasma Donors in Rural Central China: From Infection to Survival Outcomes, 1985–2008

    Get PDF
    BACKGROUND: The HIV epidemic among former plasma donors (FPDs) in rural Central China in the early-mid 1990s is likely the largest known HIV-infected cohort in the world related to commercial plasma donation but has never been fully described. The objectives of this study are to estimate the timing and geographic spread of HIV infection in this cohort and to demonstrate the impact of antiretroviral therapy on survival outcomes. METHODOLOGY/PRINCIPAL FINDINGS: HIV-infected FPDs were identified using the national HIV epidemiology and treatment databases. Locations of subjects were mapped. Dates of infection and survival were estimated using the midpoint date between initial-final plasma donation dates from 1985-2008 among those with plasma donation windows ≤2 years. Among 37,084 FPDs in the two databases, 36,110 were included. 95% were located in focal areas of Henan Province and adjacent areas of surrounding provinces. Midpoint year between initial-final plasma donation dates was 1994 among FPDs with known donation dates. Median survival from infection to AIDS was 11.8 years and, among those not treated, 1.6 years from AIDS to death. Among those on treatment, 71% were still alive after five years. Using Cox proportional hazard modeling, untreated AIDS patients were 4.9 times (95% confidence interval 4.6-5.2) more likely to die than those on treatment. CONCLUSIONS/SIGNIFICANCE: The epidemic of HIV-infected FPD in China was not widespread throughout China but rather was centered in Henan Province and the adjacent areas of surrounding provinces. Even in these areas, infections were concentrated in focal locations. Overall, HIV infections in this cohort peaked in 1994, with median survival of 13.4 years from infection to death among those not treated. Among AIDS patients on treatment, 71% were still alive after five years

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions

    Get PDF
    GeMn/Ge epitaxial 'superlattices' grown by molecular beam epitaxy with different growth conditions have been systematically investigated by transmission electron microscopy. It is revealed that periodic arrays of GeMn nanodots can be formed on Ge and GaAs substrates at low temperature (approximately 70°C) due to the matched lattice constants of Ge (5.656 Å) and GaAs (5.653 Å), while a periodic Ge/GeMn superlattice grown on Si showed disordered GeMn nanodots with a large amount of stacking faults, which can be explained by the fact that Ge and Si have a large lattice mismatch. Moreover, by varying growth conditions, the GeMn/Ge superlattices can be manipulated from having disordered GeMn nanodots to ordered coherent nanodots and then to ordered nanocolumns
    corecore