144,552 research outputs found

    Trapping and displacement of liquid collars and plugs in rough-walled tubes

    Full text link
    A liquid film wetting the interior of a long circular cylinder redistributes under the action of surface tension to form annular collars or occlusive plugs. These equilibrium structures are invariant under axial translation within a perfectly smooth uniform tube and therefore can be displaced axially by very weak external forcing. We consider how this degeneracy is disrupted when the tube wall is rough, and determine threshold conditions under which collars or plugs resist displacement under forcing. Wall roughness is modelled as a non-axisymmetric Gaussian random field of prescribed correlation length and small variance, mimicking some of the geometric irregularities inherent in applications such as lung airways. The thin film coating this surface is modelled using lubrication theory. When the roughness is weak, we show how the locations of equilibrium collars and plugs can be identified in terms of the azimuthally averaged tube radius; we derive conditions specifying equilibrium collar locations under an externally imposed shear flow, and plug locations under an imposed pressure gradient. We use these results to determine the probability of external forcing being sufficient to displace a collar or plug from a rough-walled tube, when the tube roughness is defined only in statistical terms

    A Helson-Szeg\"o theorem for subdiagonal subalgebras with applications to Toeplitz operators

    Full text link
    We formulate and establish a noncommutative version of the well known Helson-Szego theorem about the angle between past and future for subdiagonal subalgebras. We then proceed to use this theorem to characterise the symbols of invertible Toeplitz operators on the noncommutative Hardy spaces associated to subdiagonal subalgebras

    Quantum critical points of Helical Fermi Liquids

    Full text link
    Following our previous work, we study the quantum phase transitions which spontaneously develop ferromagnetic spin order in helical fermi liquids which breaks continuous spin-space rotation symmetry, with application to the edge states of 3d topological band insulators. With finite fermi surface, the critical point has both z = 3 over-damped and z = 2 propagating quantum critical modes, and the z = 3 mode will lead to non-fermi liquid behavior on the entire fermi surface. In the ordered phase, the Goldstone mode is over-damped unless it propagates along special directions, and quasiparticle is ill defined on most parts of the fermi surface except for special points. Generalizations of our results to other systems with spin-orbit couplings are also discussed.Comment: 5 pages, 2 figure

    Drop spreading with random viscosity

    Full text link
    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated viscosity within the precursor film to hinder spreading. A low-order model provides explicit predictions of the variances in spreading rate and drop location, which are validated against simulations
    corecore