23,887 research outputs found

    A Comparison of Modeling Units in Sequence-to-Sequence Speech Recognition with the Transformer on Mandarin Chinese

    Full text link
    The choice of modeling units is critical to automatic speech recognition (ASR) tasks. Conventional ASR systems typically choose context-dependent states (CD-states) or context-dependent phonemes (CD-phonemes) as their modeling units. However, it has been challenged by sequence-to-sequence attention-based models, which integrate an acoustic, pronunciation and language model into a single neural network. On English ASR tasks, previous attempts have already shown that the modeling unit of graphemes can outperform that of phonemes by sequence-to-sequence attention-based model. In this paper, we are concerned with modeling units on Mandarin Chinese ASR tasks using sequence-to-sequence attention-based models with the Transformer. Five modeling units are explored including context-independent phonemes (CI-phonemes), syllables, words, sub-words and characters. Experiments on HKUST datasets demonstrate that the lexicon free modeling units can outperform lexicon related modeling units in terms of character error rate (CER). Among five modeling units, character based model performs best and establishes a new state-of-the-art CER of 26.64%26.64\% on HKUST datasets without a hand-designed lexicon and an extra language model integration, which corresponds to a 4.8%4.8\% relative improvement over the existing best CER of 28.0%28.0\% by the joint CTC-attention based encoder-decoder network.Comment: arXiv admin note: substantial text overlap with arXiv:1804.1075

    Floquet topological insulator phase in a Weyl semimetal thin film with disorder

    Full text link
    We investigate the effects of periodic fields and disorder on topological properties of a Weyl-semimetal thin film. The two periodic fields, i.e., a periodic magnetic field and elliptically polarized light, are discussed respectively. By use of the Floquet theory, we find that both the two periodic drives can resonantly induce the topological transitions from normal insulator (NI) phases to Floquet topological insulator (FTI) phases. The Floquet topological transitions are characterized by variation of Chern number. Moreover, we show that the Floquet topological transitions can be explained by a combination of the quantum well approximation and the rotating wave approximation. In the disordered Weyl-semimetal thin film model under periodic fields, we calculate the Bott index to characterize topological phase. It is found that the FTI phase is robust against weak disorder, and collapses for strong disorder strength. Interestingly, we find that disorder can also induce a topological transition from a topological trivial phase to an FTI phase, establishing the Floquet topological Anderson insulator (FTAI) phase. Finally, an effective-medium theory based on the Born approximation further confirms the numerical conclusions

    Topological Anderson insulator phase in a Dirac-semimetal thin film

    Full text link
    The recently discovered topological Dirac semimetal represents a new exotic quantum state of matter. Topological Dirac semimetals can be viewed as three dimensional analogues of graphene, in which the Dirac nodes are protected by crystalline symmetry. It has been found that quantum confinement effect can gap out Dirac nodes and convert Dirac semimetal to a band insulator. The band insulator is either normal insulator or quantum spin Hall insulator depending on the thin film thickness. We present the study of disorder effects in thin film of Dirac semimetals. It is found that moderate Anderson disorder strength can drive a topological phase transition from normal band insulator to topological Anderson insulator in Dirac semimetal thin film. The numerical calculation based on the model parameters of Dirac semimetal Na3_{3}Bi shows that in the topological Anderson insulator phase a quantized conductance plateau occurs in the bulk gap of band insulator, and the distributions of local currents further confirm that the quantized conductance plateau arises from the helical edge states induced by disorder. Finally, an effective medium theory based on Born approximation fits the numerical data

    Disorder-induced topological phase transitions on Lieb lattices

    Full text link
    Motivated by the very recent experimental realization of electronic Lieb lattices and research interest on topological states of matter, we study the topological phase transitions driven by Anderson disorder on spin-orbit coupled Lieb lattices in the presence of spin-independent and dependent potentials. By combining the numerical transport and self-consistent Born approximation methods, we found that both time-reversal invariant and broken Lieb lattices can host disorder-induced gapful topological phases, including the quantum spin Hall insulator (QSHI) and quantum anomalous Hall insulator (QAHI) phases. For the time-reversal invariant case, this disorder can induce a topological phase transition directly from normal insulator (NI) to the QSHI. While for the time-reversal broken case, the disorder can induce either a QAHI-QSHI phase transition or a NI-QAHI-QSHI phase transition. Remarkably, the time-reversal broken QSHI phase can be induced by Anderson disorder on the spin-orbit coupled Lieb lattices without time-reversal symmetry.Comment: accepted for publication in Phys. Rev.

    Topological Superconductivity Intertwined with Broken Symmetries

    Full text link
    Recently the superconductor and topological semimetal PbTaSe2_2 was experimentally found to exhibit surface-only lattice rotational symmetry breaking below TcT_c. We exploit the Ginzburg-Landau free energy and propose a microscopic two-channel model to study possible superconducting states on the surface of PbTaSe2_2. We identify two types of topological superconducting states. One is time-reversal invariant and preserves the lattice hexagonal symmetry while the other breaks both symmetries. We find that such time-reversal symmetry breaking is unavoidable for a superconducting state in a two dimensional irreducible representation of crystal point group in a system where the spatial inversion symmetry is broken and the strong spin-orbit coupling is present. Our findings will guide the search for topological chiral superconductors.Comment: 4+5 pages, 5 figure

    Improving Action Localization by Progressive Cross-stream Cooperation

    Full text link
    Spatio-temporal action localization consists of three levels of tasks: spatial localization, action classification, and temporal segmentation. In this work, we propose a new Progressive Cross-stream Cooperation (PCSC) framework to use both region proposals and features from one stream (i.e. Flow/RGB) to help another stream (i.e. RGB/Flow) to iteratively improve action localization results and generate better bounding boxes in an iterative fashion. Specifically, we first generate a larger set of region proposals by combining the latest region proposals from both streams, from which we can readily obtain a larger set of labelled training samples to help learn better action detection models. Second, we also propose a new message passing approach to pass information from one stream to another stream in order to learn better representations, which also leads to better action detection models. As a result, our iterative framework progressively improves action localization results at the frame level. To improve action localization results at the video level, we additionally propose a new strategy to train class-specific actionness detectors for better temporal segmentation, which can be readily learnt by focusing on "confusing" samples from the same action class. Comprehensive experiments on two benchmark datasets UCF-101-24 and J-HMDB demonstrate the effectiveness of our newly proposed approaches for spatio-temporal action localization in realistic scenarios.Comment: CVPR201

    Design and optimization of resistive anode for a two-dimensional imaging triple-GEM detector

    Full text link
    The optimization of resistive anode for two dimensional imaging detectors which consists of a series of high resistive square pads surrounding by low resistive strips has been studied by both numerical simulations and experimental tests. It has been found that to obtain good detector performance, the resistance ratio of the pad to the strip should be larger than 5, the nonuniformity of the pad surface resistivity had better be less than 20%20\%, a smaller pad width leads to a smaller spatial resolution and when the pad width is 6mm6mm, the spatial resolution (σ\sigma) can reach about 105μm105{\mu}m. Based on the study results, a 2-D GEM detector prototype with the optimized resistive anode is constructed and a good imaging performance is achieved.Comment: 6 pages,11 figure

    Finite-size effects in non-Hermitian topological systems

    Full text link
    We systematically investigate the finite-size effects in non-Hermitian one-dimensional (1D) Su-Schrieffer-Heeger (SSH) and two-dimensional (2D) Chern insulator models. Using a combination of analytical and numerical calculations, we show that the non-Hermitian intra-cell hoppings in the SSH model can modify the localization lengths of bulk and end states, giving rise to a complex finite-size energy gap that exhibits an oscillating exponential decay as the chain length grows. However, the imaginary staggered on-site potentials in the SSH model only change the end-state energy, leaving the localization lengths of the system unchanged. In this case, the finite-size energy gap can undergo a transition from real values to imaginary values. We observed similar phenomena for the finite-size effect in 2D Chern insulator systems.Comment: 12 pages, 12 figures. Accepted by Physical Review

    From Nodal Ring Topological Superfluids to Spiral Majorana Modes in Cold Atomic Systems

    Full text link
    In this work, we consider a 3D cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s-wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a novel gapless phase with spiral Majorana modes on the surface. The spatial resolved radio frequency spectroscopy is suggested to detect this novel nodal ring topological superfluid phase.Comment: 5 pages, 4 figures. Comments are welcom

    A magnetic Impurity in a Weyl semimetal

    Full text link
    We utilize the variational method to study the Kondo screening of a spin-1/21/2 magnetic impurity in a three-dimensional (3D) Weyl semimetal with two Weyl nodes along the kzk_z-axis. The model reduces to a 3D Dirac semimetal when the separation of the two Weyl nodes vanishes. When the chemical potential lies at the nodal point, μ=0\mu=0, the impurity spin is screened only if the coupling between the impurity and the conduction electron exceeds a critical value. For finite but small μ\mu, the impurity spin is weakly bound due to the low density of state, which is proportional to μ2\mu^2, contrary to that in a 2D Dirac metal such as graphene and 2D helical metal where the density of states is proportional to ∣μ∣|\mu|. The spin-spin correlation function Juv(r)J_{uv}(\mathbf{r}) between the spin vv-component of the magnetic impurity at the origin and the spin uu-component of a conduction electron at spatial point r\mathbf{r}, is found to be strongly anisotropic due to the spin-orbit coupling, and it decays in the power-law. The main difference of the Kondo screening in 3D Weyl semimetals and in Dirac semimetals is in the spin xx- (yy-) component of the correlation function in the spatial direction of the zz-axis.Comment: 8 pages, 5 figure
    • …
    corecore