982 research outputs found
Clinical efficacy, radiographic and safety findings through 2 years of golimumab treatment in patients with active psoriatic arthritis: results from a long-term extension of the randomised, placebo-controlled GO-REVEAL study
Objectives: To assess long-term golimumab efficacy/safety in patients with active psoriatic arthritis (PsA).<p></p>
Methods Adult PsA patients (≥3 swollen, ≥3 tender joints, active psoriasis) were randomly assigned to subcutaneous injections of placebo, golimumab 50 mg or 100 mg every 4 weeks (q4wks) through week 20. All patients received golimumab 50 or 100 mg beginning week 24. Findings through 2 years are reported. Efficacy evaluations included ≥20% improvement in American College of Rheumatology (ACR20) response, good/moderate response in Disease Activity Scores incorporating 28 joints and C-reactive protein (DAS28-CRP), ≥75% improvement in Psoriasis Area and Severity Index (PASI75) and changes in PsA-modified Sharp/van der Heijde scores (SHS).<p></p>
Results: Golimumab treatment through 2 years was effective in maintaining clinical response (response rates: ACR20 63%–70%, DAS28-CRP 77%–86%, PASI75 56%–72%) and inhibiting radiographic progression (mean change in PsA-modified SHS in golimumab-treated patients: −0.36), with no clear difference between doses. No new safety signals were identified through 2 years. With the study's tuberculosis screening and prophylactic measures, no patient developed active tuberculosis through 2 years.<p></p>
Conclusions: Golimumab 50 and 100 mg for up to 2 years yielded sustained clinical and radiographic efficacy when administered to patients with active PsA. Increasing the golimumab dose from 50 to 100 mg q4wks added limited benefit. Golimumab safety through up to 2 years was consistent with other antitumour necrosis factor α agents used to treat PsA. Treatment of patients with latent tuberculosis identified at baseline appeared to be effective in inhibiting the development of active tuberculosis.<p></p>
Threshold image target segmentation technology based on intelligent algorithms
This paper briefly introduces the optimal threshold calculation model and particle swarm optimization (PSO) algorithm for image segmentation and improves the PSO algorithm. Then the standard PSO algorithm and improved PSO algorithm were used in MATLAB software to make simulation analysis on image segmentation. The results show that the improved PSO algorithm converges faster and has higher fitness value; after the calculation of the two algorithms, it is found that the improved PSO algorithm is better in the subjective perspective, and the image obtained by the improved PSO segmentation has higher regional consistency and takes shorter time in the perspective of quantitative objective data. In conclusion, the improved PSO algorithm is effective in image segmentation
Density functional theory of phase coexistence in weakly polydisperse fluids
The recently proposed universal relations between the moments of the
polydispersity distributions of a phase-separated weakly polydisperse system
are analyzed in detail using the numerical results obtained by solving a simple
density functional theory of a polydisperse fluid. It is shown that universal
properties are the exception rather than the rule.Comment: 10 pages, 2 figures, to appear in PR
The effect of the spin-orbit interaction on the band gap of half-metals
The spin-orbit interaction can cause a nonvanishing density of states (DOS)
within the minority-spin band gap of half-metals around the Fermi level. We
examine the magnitude of the effect in Heusler alloys, zinc-blende half metals
and diluted magnetic semiconductors, using first-principles calculations. We
find that the ratio of spin-down to spin-up DOS at the Fermi level can range
from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As)
to 13% for MnBi.Comment: 5 pages, 3 figure
Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature
The importance of real-time polymerase chain reaction (PCR) has increased steadily in clinical applications over the last decade. Many applications utilize SYBR Green I dye to follow the accumulation of amplicons in real time. SYBR Green I has, however, a number of limitations that include the inhibition of PCR, preferential binding to GC-rich sequences and effects on melting curve analysis. Although a few alternative dyes without some of these limitations have been recently proposed, no large-scale investigation into the properties of intercalating dyes has been performed. In this study, we investigate 15 different intercalating DNA dyes for their inhibitory effects on PCR, effects on DNA melting temperature and possible preferential binding to GC-rich sequences. Our results demonstrated that in contrast to the results of SYBR Green I, two intercalating dyes SYTO-13 and SYTO-82 do not inhibit PCR, show no preferential binding to GC rich sequences and do not influence melting temperature, Tm, even at high concentrations. In addition, SYTO-82 demonstrated a 50-fold lower detection limit in a dilution series assay. In conclusion, the properties of SYTO-82 and SYTO-13 will simplify the development of multiplex assays and increase the sensitivity of real-time PCR
Two-proton correlations from 158 AGeV Pb+Pb central collisions
The two-proton correlation function at midrapidity from Pb+Pb central
collisions at 158 AGeV has been measured by the NA49 experiment. The results
are compared to model predictions from static thermal Gaussian proton source
distributions and transport models RQMD and VENUS. An effective proton source
size is determined by minimizing CHI-square/ndf between the correlation
functions of the data and those calculated for the Gaussian sources, yielding
3.85 +-0.15(stat.) +0.60-0.25(syst.) fm. Both the RQMD and the VENUS model are
consistent with the data within the error in the correlation peak region.Comment: RevTeX style, 6 pages, 4 figures, 1 table. More discussion are added
about the structure on the tail of the correlation function. The systematic
error is revised. To appear in Phys. Lett.
Event-by-event fluctuations of average transverse momentum in central Pb+Pb collisions at 158 GeV per nucleon
We present first data on event-by-event fluctuations in the average
transverse momentum of charged particles produced in Pb+Pb collisions at the
CERN SPS. This measurement provides previously unavailable information allowing
sensitive tests of microscopic and thermodynamic collision models and to search
for fluctuations expected to occur in the vicinity of the predicted QCD phase
transition. We find that the observed variance of the event-by-event average
transverse momentum is consistent with independent particle production modified
by the known two-particle correlations due to quantum statistics and final
state interactions and folded with the resolution of the NA49 apparatus. For
two specific models of non-statistical fluctuations in transverse momentum
limits are derived in terms of fluctuation amplitude. We show that a
significant part of the parameter space for a model of isospin fluctuations
predicted as a consequence of chiral symmetry restoration in a non-equilibrium
scenario is excluded by our measurement.Comment: 6 pages, 2 figures, submitted to Phys. Lett.
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
- …