79,675 research outputs found

    Size dependence of second-order hyperpolarizability of finite periodic chain under Su-Schrieffer-Heeger model

    Full text link
    The second hyperpolarizability γN(3ωω,ω,ω)\gamma_N(-3\omega\omega,\omega,\omega) of NN double-bond finite chain of trans-polyactylene is analyzed using the Su-Schrieffer-Heeger model to explain qualitative features of the size-dependence behavior of γN\gamma_N. Our study shows that γN/N\gamma_N/N is {\it nonmonotonic} with NN and that the nonmonotonicity is caused by the dominant contribution of the intraband transition to γN\gamma_N in polyenes. Several important physical effects are discussed to reduce quantitative discrepancies between experimental and our resultsComment: 3 figures, 1 tabl

    Dimerization-assisted energy transport in light-harvesting complexes

    Full text link
    We study the role of the dimer structure of light-harvesting complex II (LH2) in excitation transfer from the LH2 (without a reaction center (RC)) to the LH1 (surrounding the RC), or from the LH2 to another LH2. The excited and un-excited states of a bacteriochlorophyll (BChl) are modeled by a quasi-spin. In the framework of quantum open system theory, we represent the excitation transfer as the total leakage of the LH2 system and then calculate the transfer efficiency and average transfer time. For different initial states with various quantum superposition properties, we study how the dimerization of the B850 BChl ring can enhance the transfer efficiency and shorten the average transfer time.Comment: 11 pages, 6 figure

    Quantum spin mixing in a binary mixture of spin-1 atomic condensates

    Full text link
    We study quantum spin mixing in a binary mixture of spin-1 condensates including coherent interspecies mixing process, using the familiar spinor condensates of 87^{87}Rb and 23^{23}Na atoms in the ground lower hyperfine F=1 manifolds as prototype examples. Within the single spatial mode approximation for each of the two spinor condensates, the mixing dynamics reduce to that of three coupled nonlinear pendulums with clear physical interpretations. Using suitably prepared initial states, it is possible to determine the interspecies singlet-pairing as well as spin-exchange interactions from the subsequent mixing dynamics.Comment: 6 pages, 3 figure

    The X-ray afterglow of GRB 081109A: clue to the wind bubble structure

    Full text link
    We present the prompt BAT and afterglow XRT data of Swift-discovered GRB081109A up to ~ 5\times 10^5 sec after the trigger, and the early ground-based optical follow-ups. The temporal and spectral indices of the X-ray afterglow emission change remarkably. We interpret this as the GRB jet first traversing the freely expanding supersonic stellar wind of the progenitor with density varying as ρr2\rho \propto r^{-2}. Then after approximately 300 sec the jet traverses into a region of apparent constant density similar to that expected in the stalled-wind region of a stellar wind bubble or the interstellar medium (ISM). The optical afterglow data are generally consistent with such a scenario. Our best numerical model has a wind density parameter {A0.02A_{*} \sim 0.02, a density of the stalled wind n0.12cm3n\sim 0.12 {\rm cm}^{-3}, and a transition radius 4.5×1017 \sim 4.5 \times 10^{17} cm}. Such a transition radius is smaller than that predicted by numerical simulations of the stellar wind bubbles and may be due to a rapidly evolving wind of the progenitor close to the time of its core-collapse.Comment: 7 pages, 5 figures, 2 tables, MNRAS accepted for publicatio

    Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei

    Get PDF
    BACKGROUND Vacuolar H-ATPase (V-ATPase) is a highly conserved protein complex which hydrolyzes ATP and pumps protons to acidify vacuolar vesicles. Beyond its role in pH maintenance, the involvement of V-ATPase in endocytosis is well documented in mammals and plants but is less clear in Trypanosoma brucei. METHODS In this study, the subcellular localization of V-ATPase subunit B (TbVAB) of T. brucei was assessed via in situ N-terminal YFP-tagging and immunofluorescence assays. Transgenic bloodstream forms (BSF) of T. brucei were generated which comprised either a V-ATPase subunit B (TbVAB) conditional knockout or a V-ATPase subunit A (TbVAA) knockdown. Acridine orange and BCECF-AM were employed to assess the roles of V-ATPase in the pH regulation of BSF T. brucei. The endocytic activities of three markers were also characterized by flow cytometry analyses. Furthermore, trypanosomes were counted from trypanolysis treatment groups (either containing 1% or 5% NHS) and endocytosed trypanosome lytic factor (TLF) was also analyzed by an immunoblotting assay. RESULTS TbVAB was found to localize to acidocalcisomes, lysosomes and probably also to endosomes of BSF of T. brucei and was demonstrated to be essential for cell growth. TbVAB depletion neutralized acidic organelles at 24 hours post-tetracycline depletion (hpd), meanwhile the steady state intracellular pH increased from 7.016 ± 0.013 to 7.422 ± 0.058. Trypanosomes with TbVAB depletion at 24 hpd were found to take up more transferrin (2.068 ± 0.277 fold) but less tomato lectin (49.31 ± 22.57%) by endocytosis, while no significant change was detected in dextran uptake. Similar endocytic dysregulated phenotypes were also observed in TbVAA knockdown cells. In addition, TbVAB depleted trypanosomes showed a low uptake of TLF and exhibited less sensitive to lysis in both 1% and 5% NHS treatments. CONCLUSIONS TbVAB is a key component of V-ATPase and was found to play a key function in endocytosis as well as exhibiting different effects in a receptor/cargo dependent manner in BSF of T. brucei. Besides vacuolar alkalinization, the dysregulation of endocytosis in TbVAB depleted T. brucei is considered to contribute to the reduced sensitivity to lysis by normal human serum
    corecore