1,617 research outputs found
Spin-dependent electron transport through the ferromagnet/semiconductor interface induced by photon excitation
Circularly polarized light was used to excite electrons with a spin polarization perpendicular to the film plane in 3 nm Au/5 nm Co/GaAs (110) structures. At perpendicular saturation, the bias dependence of the photocurrent was observed to change in the range around 0.7 eV, corresponding to the Schottky barrier height. The photocurrent is observed to change significantly as a function of the magnetization direction with respect to the photon helicity, indicating spin-dependent transport between the semiconductor and the ferromagnetic layer at room temperature
Geometrical aspects of isoscaling
The property of isoscaling in nuclear fragmentation is studied using a simple
bond percolation model with ``isospin'' added as an extra degree of freedom. It
is shown analytically, first, that isoscaling is expected to exist in such a
simple model with the only assumption of fair sampling with homogeneous
probabilities. Second, numerical percolations of hundreds of thousands of grids
of different sizes and with different to ratios confirm this prediction
with remarkable agreement. It is thus concluded that isoscaling emerges from
the simple assumption of fair sampling with homogeneous probabilities, a
requirement which, if put in the nomenclature of the minimum information
theory, translates simply into the existence of equiprobable configurations in
maximum entropy states
Homeostasis Meets Motivation in the Battle to Control Food Intake.
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity
Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions
We propose a quasi-particle model to describe the lattice QCD equation of
state for pure SU(3) gauge theory in its deconfined state, for .
The method involves mapping the interaction part of the equation of state to an
effective fugacity of otherwise non-interacting quasi-gluons. We find that this
mapping is exact. Using the quasi-gluon distribution function, we determine the
energy density and the modified dispersion relation for the single particle
energy, in which the trace anomaly is manifest. As an application, we first
determine the Debye mass, and then the important transport parameters, {\it
viz}, the shear viscosity, and the shear viscosity to entropy density
ratio, . We find that both and
are sensitive to the interactions, and that the interactions significantly
lower both and .Comment: 10 pages, 8 figures, epj class file, version accepted for publication
in Euro. Phys.J
Threshold Electrodisintegration of ^3He
Cross sections were measured for the near-threshold electrodisintegration of
^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and
prior measurements the transverse and longitudinal response functions R_T and
R_L were deduced. Comparisons are made against previously published and new
non-relativistic A=3 calculations using the best available NN potentials. In
general, for q<2 fm^{-1} these calculations accurately predict the threshold
electrodisintegration of ^3He. Agreement at increasing q demands consideration
of two-body terms, but discrepancies still appear at the highest momentum
transfers probed, perhaps due to the neglect of relativistic dynamics, or to
the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review
Andreev reflections in the pseudogap state of cuprate supercondcutors
We propose that, if the pseudogap state in the cuprate superconductors can be
described in terms of the phase-incoherent preformed pairs, there should exist
Andreev reflection from these pairs even above the superconducting transition
temperature, . After giving qualitative arguments for this effect, we
present more quantitative calculations based on the Bogoliubov--de Gennes
equation. Experimental observations of the effects of Andreev reflections above
---such as an enhanced tunneling conductance below the gap along the
copper oxide plane---could provide unambiguous evidence for the preformed pairs
in the pseudogap state.Comment: 5 pages, 1 figur
Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings
There are relatively few H2CO mappings of large-area giant molecular cloud
(GMCs). H2CO absorption lines are good tracers for low-temperature molecular
clouds towards star formation regions. Thus, the aim of the study was to
identify H2CO distributions in ambient molecular clouds. We investigated
morphologic relations among 6-cm continuum brightness temperature (CBT) data
and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA
telescope) and midcourse space experiment (MSX) data, and considered the impact
of background components on foreground clouds. We report simultaneous 6-cm H2CO
absorption lines and H110\alpha radio recombination line observations and give
several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3
(70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100')
GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can
compare correlations. The resolution for H2CO, 12CO and MSX data was about 10',
8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m
MSX colorscale and CBT data revealed great morphological correlation in the
large area, although there are some discrepancies between 12CO and H2CO peaks
in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a
high CBT, but a H2CO cloud to the north is possible against the cosmic
microwave background. A statistical diagram shows that 85.21% of H2CO
absorption lines are distributed in the intensity range from -1.0 to 0 Jy and
the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in
Astrophysics and Space Scienc
Substorms and Solar Eclipses: A Mutual Information Based Study
Solar eclipses present a rare glimpse into the impact of ionospheric electrodynamics on the magnetosphere independent of other well studied seasonal influences. Despite decades of study, we still do not have a complete description of the conditions for geomagnetic substorm onset. We present herein a mutual information based study of previously published substorm onsets and the past two decades of eclipses which indicates the likelihood of co-occurrence is greater than random chance. A plausible interpretation for this relation suggests that the abrupt fluctuations in ionospheric conductivity during an eclipse may influence the magnetospheric preconditions of substorm initiation. While the mechanism remains unclear, this study presents strong evidence of a link between substorm onset and solar eclipses
Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003
We present and interpret observations of two morphologically homologous
flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both
flares displayed four homologous H-alpha ribbons and were both accompanied by
coronal mass ejections (CMEs). The central flare ribbons were located at the
site of an emerging bipole in the center of the active region. The negative
polarity of this bipole fragmented in two main pieces, one rotating around the
positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic
field and compute its topology, using as boundary condition the magnetogram
closest in time to each flare. In particular, we calculate the location of
quasiseparatrix layers (QSLs) in order to understand the connectivity between
the flare ribbons. Though several polarities were present in AR 10501, the
global magnetic field topology corresponds to a quadrupolar magnetic field
distribution without magnetic null points. For both flares, the photospheric
traces of QSLs are similar and match well the locations of the four H-alpha
ribbons. This globally unchanged topology and the continuous shearing by the
rotating bipole are two key factors responsible for the flare homology.
However, our analyses also indicate that different magnetic connectivity
domains of the quadrupolar configuration become unstable during each flare, so
that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted
- …