22 research outputs found

    Ultrafast nonthermal terahertz electrodynamics and possible quantum energy transfer in the Nb3Sn superconductor

    Get PDF
    We report terahertz (THz) electrodynamics of a moderately clean A15 superconductor (SC) following ultrafast excitation to manipulate quasiparticle (QP) transport. In the Martensitic normal state, we observe a photo enhancement in the THz conductivity using optical pulses, while the opposite is observed for the THz pump. This demonstrates wavelength-selective nonthermal control of conductivity distinct from sample heating. The photo enhancement persists up to an additional critical temperature, above the SC one, from a competing electronic order. In the SC state, the fluence dependence of pair-breaking kinetics together with an analytic model provides an implication for a “one photon to one Cooper pair” nonresonant energy transfer during the 35-fs laser pulse; i.e., the fitted photon energy ℏω absorption to create QPs set by 2ΔSC/ℏω=0.33%. This is more than one order of magnitude smaller than in previously studied BCS SCs, which we attribute to strong electron-phonon coupling and possible influence of phonon condensation

    Expression of SET Protein in the Ovaries of Patients with Polycystic Ovary Syndrome

    Get PDF
    Background. We previously found that expression of SET gene was up-regulated in polycystic ovaries by using microarray. It suggested that SET may be an attractive candidate regulator involved in the pathophysiology of polycystic ovary syndrome (PCOS). In this study, expression and cellular localization of SET protein were investigated in human polycystic and normal ovaries. Method. Ovarian tissues, six normal ovaries and six polycystic ovaries, were collected during transsexual operation and surgical treatment with the signed consent form. The cellular localization of SET protein was observed by immunohistochemistry. The expression levels of SET protein were analyzed by Western Blot. Result. SET protein was expressed predominantly in the theca cells and oocytes of human ovarian follicles in both PCOS ovarian tissues and normal ovarian tissues. The level of SET protein expression in polycystic ovaries was triple higher than that in normal ovaries (P<0.05). Conclusion. SET was overexpressed in polycystic ovaries more than that in normal ovaries. Combined with its localization in theca cells, SET may participate in regulating ovarian androgen biosynthesis and the pathophysiology of hyperandrogenism in PCOS

    LncRNA PART1 Regulates Ovarian Carcinoma Development via the miR-150-5p/MYB Axis

    No full text
    Background: Over the past few years, there have been many reports on the abnormal expression and functional relevance of long non-coding RNAs (lncRNAs) in tumors. The role played by lncRNAs in epithelial ovarian carcinoma (EOC) remains poorly understood, however the goal of the present work was to study molecular mechanisms that underlie involvement of prostate androgen-regulated transcript 1 (PART1) lncRNA in EOC development. Methods: A total of 25 tumor and 17 normal specimens were obtained from women undergoing surgery between 2015 and 2019 in the Second Affiliated Hospital, Nanjing Medical University. Expression levels for PART1 in EOC tissue and EOC cell lines were assessed using qRT-PCR. Assays for CCK-8, trans-well, colony forming and western blotting were used to investigate PART1, miR-150-5p and MYB (MYB proto-oncogene) for their invovement in EOC cell proliferation, migration and invasion. Luciferase reporter gene assay was also performed to investigate biological functions of PART1, miR-150-5p and MYB in EOC, and an animal xenograft model was employed to test tumorigenicity. Results: PART1 expression was increased in EOC relative to normal cells and correlated with EOC cell proliferation, migration and invasion. PART1 can sponge miR-150, thereby inhibiting growth of EOC by targeting MYB. The xenograft mouse model revealed that PART1 can regulate tumorigenesis in vivo. Conclusions: The PART1/miR-150/MYB axis is involved in EOC pathogenesis and could represent a new target to use in diagnosis and therapy

    Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by <i>Coreopsis grandiflora</i> by Remodeling the Rhizospheric Environment

    No full text
    Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant–soil systems remain unknown. In this study, different GABA dosages (0–8 g kg−1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9–159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant–soil systems

    CircEpha5 regulates the synthesis and secretion of androgen in mouse preantral follicles by targeting miR-758-5p

    No full text
    Circular RNAs are involved in the pathogenesis of various diseases, although its expression pattern and role in polycystic ovary syndrome (PCOS), characterised by hyperandrogenism, are not very clear. This article assessed the circRNAs expression profile in the ovaries of PCOS mice by circRNAs high-throughput sequencing and explored the role of circEpha5 in hyperandrogenism. The results showed that the overexpression of circEpha5 in mouse preantral follicles could increase the expression of Cyp17a1, an androgen synthesis-related gene, which resulted in a higher serum level of testosterone. Dual-luciferase reporter gene studies identified miR-758-5p as a direct target of circEpha5. Consequently, miR-758-5p expression was downregulated upon circEpha5 overexpression. Ectopically expressed miR-758-5p reversed the stimulation effects of circEpha5 on steroidogenesis-related gene expression and testosterone release. Therefore, circEpha5 could sponge miR-758-5p to regulate the expression of Cyp17a1, thereby promoting the synthesis and secretion of androgen in the preantral follicles. This work is contributed to the understanding of the pathogenesis of hyperandrogenemia and lays the foundation for the development of therapeutic targets of PCOS hyperandrogenism

    MicroRNA-125b Suppresses Ovarian Cancer Progression via Suppression of the Epithelial-Mesenchymal Transition Pathway by Targeting the SET Protein

    No full text
    Background/Aims: MicroRNA-125b (miR-125b) is overexpressed in several types of cancer and contributes to chemotherapy resistance. However, its role in epithelial ovarian carcinoma remains unknown. The goal of this study was to identify the relationship between miR-125b and the epithelial-mesenchymal transition (EMT) in ovarian cancer. Methods: In total, 55patients with epithelial ovarian cancer (EOC) were included in our study. The relative expression of miR-125b was measured using real-time polymerase chain reaction (RT-PCR).The protein expression of SET and EMT-related indicators in cell lines were assessed by Western blot. The regulation of SET by miR-125b was confirmed using luciferase reporter assays. The effect of miR-125b on metastasis was evaluated using an in vivo metastasis model. Results: miR-125b expression was markedly lower in the EOC specimens. Ectopic expression of miR-125b in EOC cells significantly inhibited tumor invasion.miR-125b expression was negatively associated with both EMT and SET expression, in vivo and in vitro. Mechanistic studies identified SET as a direct target of miR-125b, and the downregulation of SET, observed during tumor migration, was affected by the overexpression of miR125b. Conclusion: miR-125b suppresses EOC cell migration and invasion by targeting the SET protein, and this study may provide a novel mechanism for understanding the progression of EOC

    Construction of A-B hetero-layer intermetallic crystals: case studies of the 1144-phase TM-phosphides AB(TM)4P4 (TM=Fe, Ru, Co, Ni)

    No full text
    The discovery of the 1144-phase, e.g. CaKFe4As4, creates opportunities to build novel intermetallics with alternative stacking of two parent compounds. Here we formalize the idea by defining a class of bulk crystalline solids with A-B stacking (including 1144-phases and beyond), which is a generalization of hetero-structures from few-layer or thin-film semi-conductors to bulk intermetallics. Theoretically, four families of phosphides \textit{AB}(TM)4P4 (TM=Fe, Ru, Co, Ni) are investigated by first-principles calculations, wherein configurational, vibrational and electronic degrees of freedom are considered. It predicts a variety of stable 1144-phases (especially Ru- and Fe-phosphides). Stability rules are found and structural/electronic properties are discussed. Experimentally, we synthesize high-purity CaKRu4P4 as a proof of principle example. The synthetic method is simple and easily applied. Moreover, it alludes to a strategy to explore complex multi-component compounds, facilitated by a phase diagram coordinated by collective descriptors

    SET protein up-regulated testosterone production in the cultured preantral follicles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We found previously that the expression of SET gene was up-regulated in polycystic ovaries. Evidences suggested that SET protein was essential for regulating both the promoter activity of CYP17A1 and the biological activity of P450c17. In this study, we explored whether SET regulated androgen production in preantral follicles.</p> <p>Methods</p> <p>The mouse preantral follicles were cultured <it>in vitro</it>. Testosterone secretion and expression of steroidogenic enzymes were observed in the preantral follicles treated <it>in vitro</it> by SET overexpression and knockdown.</p> <p>Results</p> <p>Testosterone levels in the media of the AdCMV-SET infected follicles significantly increased, and the CYP17A1 and HSD3B2 expression also significantly increased (<it>P</it> < 0.05). Testosterone levels in AdSiRNA-SET infected group decreased, and so did CYP17A1 and HSD3B2 expression (<it>P</it> < 0.05).</p> <p>Conclusions</p> <p>SET played a positive role in regulating ovarian androgen biosynthesis by enhancing the transcription of steroidogenic enzymes CYP17A1 and HSD3B2, which maybe contribute to the hyperandrogenism in PCOS.</p
    corecore