1,910 research outputs found

    Unified Gas-kinetic Wave-Particle Methods III: Multiscale Photon Transport

    Get PDF
    In this paper, we extend the unified gas-kinetic wave-particle (UGKWP) method to the multiscale photon transport. In this method, the photon free streaming and scattering processes are treated in an un-splitting way. The duality descriptions, namely the simulation particle and distribution function, are utilized to describe the photon. By accurately recovering the governing equations of the unified gas-kinetic scheme (UGKS), the UGKWP preserves the multiscale dynamics of photon transport from optically thin to optically thick regime. In the optically thin regime, the UGKWP becomes a Monte Carlo type particle tracking method, while in the optically thick regime, the UGKWP becomes a diffusion equation solver. The local photon dynamics of the UGKWP, as well as the proportion of wave-described and particle-described photons are automatically adapted according to the numerical resolution and transport regime. Compared to the SnS_n -type UGKS, the UGKWP requires less memory cost and does not suffer ray effect. Compared to the implicit Monte Carlo (IMC) method, the statistical noise of UGKWP is greatly reduced and computational efficiency is significantly improved in the optically thick regime. Several numerical examples covering all transport regimes from the optically thin to optically thick are computed to validate the accuracy and efficiency of the UGKWP method. In comparison to the SnS_n -type UGKS and IMC method, the UGKWP method may have several-order-of-magnitude reduction in computational cost and memory requirement in solving some multsicale transport problems.Comment: 27 pages, 15 figures. arXiv admin note: text overlap with arXiv:1810.0598

    A Novel Cooperation and Competition Strategy Among Multi-Agent Crawlers

    Get PDF
    Multi-Agent theory which is used for communication and collaboration among focused crawlers has been proved that it can improve the precision of returned result significantly. In this paper, we proposed a new organizational structure of multi-agent for focused crawlers, in which the agents were divided into three categories, namely F-Agent (Facilitator-Agent), As-Agent (Assistance-Agent) and C-Agent (Crawler-Agent). They worked on their own responsibilities and cooperated mutually to complete a common task of web crawling. In our proposed architecture of focused crawlers based on multi-agent system, we emphasized discussing the collaborative process among multiple agents. To control the cooperation among agents, we proposed a negotiation protocol based on the contract net protocol and achieved the collaboration model of focused crawlers based on multi-agent by JADE. At last, the comparative experiment results showed that our focused crawlers had higher precision and efficiency than other crawlers using the algorithms with breadth-first, best-first, etc

    Energy-Efficient Non-Orthogonal Transmission under Reliability and Finite Blocklength Constraints

    Full text link
    This paper investigates an energy-efficient non-orthogonal transmission design problem for two downlink receivers that have strict reliability and finite blocklength (latency) constraints. The Shannon capacity formula widely used in traditional designs needs the assumption of infinite blocklength and thus is no longer appropriate. We adopt the newly finite blocklength coding capacity formula for explicitly specifying the trade-off between reliability and code blocklength. However, conventional successive interference cancellation (SIC) may become infeasible due to heterogeneous blocklengths. We thus consider several scenarios with different channel conditions and with/without SIC. By carefully examining the problem structure, we present in closed-form the optimal power and code blocklength for energy-efficient transmissions. Simulation results provide interesting insights into conditions for which non-orthogonal transmission is more energy efficient than the orthogonal transmission such as TDMA.Comment: accepted by IEEE GlobeCom workshop on URLLC, 201
    • …
    corecore