94 research outputs found

    StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model

    Full text link
    Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer, e.g., the discrete variational auto-encoder (dVAE) of DALL-E. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.Comment: ICCV 202

    SpectralCLIP: Preventing Artifacts in Text-Guided Style Transfer from a Spectral Perspective

    Full text link
    Owing to the power of vision-language foundation models, e.g., CLIP, the area of image synthesis has seen recent important advances. Particularly, for style transfer, CLIP enables transferring more general and abstract styles without collecting the style images in advance, as the style can be efficiently described with natural language, and the result is optimized by minimizing the CLIP similarity between the text description and the stylized image. However, directly using CLIP to guide style transfer leads to undesirable artifacts (mainly written words and unrelated visual entities) spread over the image. In this paper, we propose SpectralCLIP, which is based on a spectral representation of the CLIP embedding sequence, where most of the common artifacts occupy specific frequencies. By masking the band including these frequencies, we can condition the generation process to adhere to the target style properties (e.g., color, texture, paint stroke, etc.) while excluding the generation of larger-scale structures corresponding to the artifacts. Experimental results show that SpectralCLIP prevents the generation of artifacts effectively in quantitative and qualitative terms, without impairing the stylisation quality. We also apply SpectralCLIP to text-conditioned image generation and show that it prevents written words in the generated images. Our code will be publicly available

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    A Mixed-Integer SDP Solution Approach to Distributionally Robust Unit Commitment with Second Order Moment Constraints

    Full text link
    A power system unit commitment (UC) problem considering uncertainties of renewable energy sources is investigated in this paper, through a distributionally robust optimization approach. We assume that the first and second order moments of stochastic parameters can be inferred from historical data, and then employed to model the set of probability distributions. The resulting problem is a two-stage distributionally robust unit commitment with second order moment constraints, and we show that it can be recast as a mixed-integer semidefinite programming (MI-SDP) with finite constraints. The solution algorithm of the problem comprises solving a series of relaxed MI-SDPs and a subroutine of feasibility checking and vertex generation. Based on the verification of strong duality of the semidefinite programming (SDP) problems, we propose a cutting plane algorithm for solving the MI-SDPs; we also introduce a SDP relaxation for the feasibility checking problem, which is an intractable biconvex optimization. Experimental results on a IEEE 6-bus system are presented, showing that without any tunings of parameters, the real-time operation cost of distributionally robust UC method outperforms those of deterministic UC and two-stage robust UC methods in general, and our method also enjoys higher reliability of dispatch operation

    Analysis and Design of Improved Weighted Average Current Control Strategy for LCL-Type Grid-Connected Inverters

    Get PDF
    corecore