129 research outputs found

    IDOL: Indicator-oriented Logic Pre-training for Logical Reasoning

    Full text link
    In the field of machine reading comprehension (MRC), existing systems have surpassed the average performance of human beings in many tasks like SQuAD. However, there is still a long way to go when it comes to logical reasoning. Although some methods for it have been put forward, they either are designed in a quite complicated way or rely too much on external structures. In this paper, we proposed IDOL (InDicator-Oriented Logic Pre-training), an easy-to-understand but highly effective further pre-training task which logically strengthens the pre-trained models with the help of 6 types of logical indicators and a logically rich dataset LGP (LoGic Pre-training). IDOL achieves state-of-the-art performance on ReClor and LogiQA, the two most representative benchmarks in logical reasoning MRC, and is proven to be capable of generalizing to different pre-trained models and other types of MRC benchmarks like RACE and SQuAD 2.0 while keeping competitive general language understanding ability through testing on tasks in GLUE. Besides, at the beginning of the era of large language models, we take several of them like ChatGPT into comparison and find that IDOL still shows its advantage.Comment: Accepted to the Findings of ACL 202

    ASC: Appearance and Structure Consistency for Unsupervised Domain Adaptation in Fetal Brain MRI Segmentation

    Full text link
    Automatic tissue segmentation of fetal brain images is essential for the quantitative analysis of prenatal neurodevelopment. However, producing voxel-level annotations of fetal brain imaging is time-consuming and expensive. To reduce labeling costs, we propose a practical unsupervised domain adaptation (UDA) setting that adapts the segmentation labels of high-quality fetal brain atlases to unlabeled fetal brain MRI data from another domain. To address the task, we propose a new UDA framework based on Appearance and Structure Consistency, named ASC. We adapt the segmentation model to the appearances of different domains by constraining the consistency before and after a frequency-based image transformation, which is to swap the appearance between brain MRI data and atlases. Consider that even in the same domain, the fetal brain images of different gestational ages could have significant variations in the anatomical structures. To make the model adapt to the structural variations in the target domain, we further encourage prediction consistency under different structural perturbations. Extensive experiments on FeTA 2021 benchmark demonstrate the effectiveness of our ASC in comparison to registration-based, semi-supervised learning-based, and existing UDA-based methods.Comment: MICCAI 2023, released code: https://github.com/lhaof/AS

    Generative Input: Towards Next-Generation Input Methods Paradigm

    Full text link
    Since the release of ChatGPT, generative models have achieved tremendous success and become the de facto approach for various NLP tasks. However, its application in the field of input methods remains under-explored. Many neural network approaches have been applied to the construction of Chinese input method engines(IMEs).Previous research often assumed that the input pinyin was correct and focused on Pinyin-to-character(P2C) task, which significantly falls short of meeting users' demands. Moreover, previous research could not leverage user feedback to optimize the model and provide personalized results. In this study, we propose a novel Generative Input paradigm named GeneInput. It uses prompts to handle all input scenarios and other intelligent auxiliary input functions, optimizing the model with user feedback to deliver personalized results. The results demonstrate that we have achieved state-of-the-art performance for the first time in the Full-mode Key-sequence to Characters(FK2C) task. We propose a novel reward model training method that eliminates the need for additional manual annotations and the performance surpasses GPT-4 in tasks involving intelligent association and conversational assistance. Compared to traditional paradigms, GeneInput not only demonstrates superior performance but also exhibits enhanced robustness, scalability, and online learning capabilities

    Experimental Study of Granular Clogging in Two-Dimensional Hopper

    Full text link
    We experimentally investigate the clogging process of granular materials in a two-dimensional hopper, and present a self-consistent physical mechanism of clogging based on preformed dynamic chain structures in the flow. We found that these chain structures follow a specific modified restricted random walk, and clogging occurs when they are mechanically stable enough to withstand the flow fluctuations, resulting in the formation of an arch at the outlet. We introduce a simple model which can explain the clogging probability by incorporating an analytical expression for chain formation and its transition into an arch. Our results provide insight into the microscopic mechanism of clogging in hopper flow.Comment: 22 pages, 8 figure

    Aggregate Model of District Heating Network for Integrated Energy Dispatch: A Physically Informed Data-Driven Approach

    Full text link
    The district heating network (DHN) is essential in enhancing the operational flexibility of integrated energy systems (IES). Yet, it is hard to obtain an accurate and concise DHN model for the operation owing to complicated network features and imperfect measurement. Considering this, this paper proposes a physically informed data-driven aggregate model (AGM) for DHN, providing a concise description of the source-load relationship of DHN without exposing network details. First, we derive the analytical relationship between the state variables of the source and load nodes of DHN, offering a physical fundament for the AGM. Second, we propose a physics-informed estimator for AGM that is robust to low-quality measurement, in which the physical constraints associated with the parameter normalization and sparsity are embedded to improve the accuracy and robustness. Finally, we propose a physics-enhanced algorithm to solve the nonlinear estimator with non-closed constraints efficiently. Simulation results verify the effectiveness of the proposed method

    OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis

    Full text link
    We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images that is capable of synthesizing diverse identity-preserved 3D heads with compelling dynamic details under full disentangled control over camera poses, facial expressions, head shapes, articulated neck and jaw poses. To achieve such high level of disentangled control, we first explicitly define a novel semantic signed distance function (SDF) around a head geometry (FLAME) conditioned on the control parameters. This semantic SDF allows us to build a differentiable volumetric correspondence map from the observation space to a disentangled canonical space from all the control parameters. We then leverage the 3D-aware GAN framework (EG3D) to synthesize detailed shape and appearance of 3D full heads in the canonical space, followed by a volume rendering step guided by the volumetric correspondence map to output into the observation space. To ensure the control accuracy on the synthesized head shapes and expressions, we introduce a geometry prior loss to conform to head SDF and a control loss to conform to the expression code. Further, we enhance the temporal realism with dynamic details conditioned upon varying expressions and joint poses. Our model can synthesize more preferable identity-preserved 3D heads with compelling dynamic details compared to the state-of-the-art methods both qualitatively and quantitatively. We also provide an ablation study to justify many of our system design choices

    Sulfur signaling pathway in cardiovascular disease

    Get PDF
    Hydrogen sulfide (H2S) and sulfur dioxide (SO2), recognized as endogenous sulfur-containing gas signaling molecules, were the third and fourth molecules to be identified subsequent to nitric oxide and carbon monoxide (CO), and exerted diverse biological effects on the cardiovascular system. However, the exact mechanisms underlying the actions of H2S and SO2 have remained elusive until now. Recently, novel post-translational modifications known as S-sulfhydration and S-sulfenylation, induced by H2S and SO2 respectively, have been proposed. These modifications involve the chemical alteration of specific cysteine residues in target proteins through S-sulfhydration and S-sulfenylation, respectively. H2S induced S-sulfhydrylation can have a significant impact on various cellular processes such as cell survival, apoptosis, cell proliferation, metabolism, mitochondrial function, endoplasmic reticulum stress, vasodilation, anti-inflammatory response and oxidative stress in the cardiovascular system. Alternatively, S-sulfenylation caused by SO2 serves primarily to maintain vascular homeostasis. Additional research is warranted to explore the physiological function of proteins with specific cysteine sites, despite the considerable advancements in comprehending the role of H2S-induced S-sulfhydration and SO2-induced S-sulfenylation in the cardiovascular system. The primary objective of this review is to present a comprehensive examination of the function and potential mechanism of S-sulfhydration and S-sulfenylation in the cardiovascular system. Proteins that undergo S-sulfhydration and S-sulfenylation may serve as promising targets for therapeutic intervention and drug development in the cardiovascular system. This could potentially expedite the future development and utilization of drugs related to H2S and SO2
    corecore