2,379 research outputs found

    Characterizing arbitrary quantum networks in the noisy intermediate-scale quantum era

    Full text link
    Quantum networks are of high interest nowadays. In short, they describe the distribution of quantum sources represented by edges to different parties represented by nodes in the networks. Bundles of tools have been developed recently to characterize quantum states from the network in the ideal case. However, features of quantum networks in the noisy intermediate-scale quantum (NISQ) era invalidate most of them and call for feasible tools. By utilizing purity, covariance, and topology of quantum networks, we provide a systematic approach to tackle with arbitrary quantum networks in the NISQ era, which can be noisy, intermediate-scale, random, and sparse. One application of our method is to witness the progress of essential elements in quantum networks, like the quality of multipartite entangled sources and quantum memory.Comment: 5+7 pages, accepted versio

    Optimal classical simulation of state-independent quantum contextuality

    Full text link
    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log2244.585\log_2 24 \approx 4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.7405.740 bits.Comment: 7 pages, 4 figure

    State-independent contextuality sets for a qutrit

    Full text link
    We present a generalized set of complex rays for a qutrit in terms of parameter q=ei2π/kq=e^{i2\pi/k}, a kk-th root of unity. Remarkably, when k=2,3k=2,3, the set reduces to two well known state-independent contextuality (SIC) sets: the Yu-Oh set and the Bengtsson-Blanchfield-Cabello set. Based on the Ramanathan-Horodecki criterion and the violation of a noncontextuality inequality, we have proven that the sets with k=3mk=3m and k=4k=4 are SIC, while the set with k=5k=5 is not. Our generalized set of rays will theoretically enrich the study of SIC proof, and experimentally stimulate the novel application to quantum information processing.Comment: 4 pages, 2 figures; revised versio

    Demonstration of the double Q^2-rescaling model

    Get PDF
    In this paper we have demonstrated the double Q^2-rescaling model (DQ^2RM) of parton distribution functions of nucleon bounded in nucleus. With different x-region of l-A deep inelastic scattering process we take different approach: in high x-region (0.1\le x\le 0.7) we use the distorted QCD vacuum model which resulted from topologically multi -connected domain vacuum structure of nucleus; in low x-region (10^{-4}\le x\le10^{-3}) we adopt the Glauber (Mueller) multi- scattering formula for gluon coherently rescattering in nucleus. From these two approach we justified the rescaling parton distribution functions in bound nucleon are in agreement well with those we got from DQ^2RM, thus the validity for this phenomenologically model are demonstrated.Comment: 19 page, RevTex, 5 figures in postscrip
    corecore