295 research outputs found
Two hAT transposon genes were transferred from Brassicaceae to broomrapes and are actively expressed in some recipients
A growing body of evidence is pointing to an important role of horizontal gene transfer (HGT) in the evolution of higher plants. However, reports of HGTs of transposable elements (TEs) in plants are still scarce, and only one case is known of a class II transposon horizontally transferred between grasses. To investigate possible TE transfers in dicots, we performed transcriptome screening in the obligate root parasite Phelipanche aegyptiaca (Orobanchaceae), data-mining in the draft genome assemblies of four other Orobanchaceae, gene cloning, gene annotation in species with genomic information, and a molecular phylogenetic analysis. We discovered that the broomrape genera Phelipanche and Orobanche acquired two related nuclear genes (christened BO transposase genes), a new group of the hAT superfamily of class II transposons, from Asian Sisymbrieae or a closely related tribe of Brassicaceae, by HGT. The collinearity of the flanking genes, lack of a classic border structure, and low expression levels suggest that BO transposase genes cannot transpose in Brassicaceae, whereas they are highly expressed in P. aegyptiaca
Wound Segmentation with Dynamic Illumination Correction and Dual-view Semantic Fusion
Wound image segmentation is a critical component for the clinical diagnosis
and in-time treatment of wounds. Recently, deep learning has become the
mainstream methodology for wound image segmentation. However, the
pre-processing of the wound image, such as the illumination correction, is
required before the training phase as the performance can be greatly improved.
The correction procedure and the training of deep models are independent of
each other, which leads to sub-optimal segmentation performance as the fixed
illumination correction may not be suitable for all images. To address
aforementioned issues, an end-to-end dual-view segmentation approach was
proposed in this paper, by incorporating a learn-able illumination correction
module into the deep segmentation models. The parameters of the module can be
learned and updated during the training stage automatically, while the
dual-view fusion can fully employ the features from both the raw images and the
enhanced ones. To demonstrate the effectiveness and robustness of the proposed
framework, the extensive experiments are conducted on the benchmark datasets.
The encouraging results suggest that our framework can significantly improve
the segmentation performance, compared to the state-of-the-art methods
Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses
The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterisation, phylogenetics and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L.. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signalling and reactive oxygen species-mediated MAPK cascade signalling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up-down-up expression from stress treatments to recovery. This study provides new insights into the structures and functions of plant 14-3-3 genes
- …