117 research outputs found

    Causal Collaborative Filtering

    Full text link
    Recommender systems are important and valuable tools for many personalized services. Collaborative Filtering (CF) algorithms -- among others -- are fundamental algorithms driving the underlying mechanism of personalized recommendation. Many of the traditional CF algorithms are designed based on the fundamental idea of mining or learning correlative patterns from data for matching, including memory-based methods such as user/item-based CF as well as learning-based methods such as matrix factorization and deep learning models. However, advancing from correlative learning to causal learning is an important problem, because causal/counterfactual modeling can help us to think outside of the observational data for user modeling and personalization. In this paper, we propose Causal Collaborative Filtering (CCF) -- a general framework for modeling causality in collaborative filtering and recommendation. We first provide a unified causal view of CF and mathematically show that many of the traditional CF algorithms are actually special cases of CCF under simplified causal graphs. We then propose a conditional intervention approach for dodo-calculus so that we can estimate the causal relations based on observational data. Finally, we further propose a general counterfactual constrained learning framework for estimating the user-item preferences. Experiments are conducted on two types of real-world datasets -- traditional and randomized trial data -- and results show that our framework can improve the recommendation performance of many CF algorithms.Comment: 14 pages, 5 figures, 3 table

    OpenAGI: When LLM Meets Domain Experts

    Full text link
    Human intelligence has the remarkable ability to assemble basic skills into complex ones so as to solve complex tasks. This ability is equally important for Artificial Intelligence (AI), and thus, we assert that in addition to the development of large, comprehensive intelligent models, it is equally crucial to equip such models with the capability to harness various domain-specific expert models for complex task-solving in the pursuit of Artificial General Intelligence (AGI). Recent developments in Large Language Models (LLMs) have demonstrated remarkable learning and reasoning abilities, making them promising as a controller to select, synthesize, and execute external models to solve complex tasks. In this project, we develop OpenAGI, an open-source AGI research platform, specifically designed to offer complex, multi-step tasks and accompanied by task-specific datasets, evaluation metrics, and a diverse range of extensible models. OpenAGI formulates complex tasks as natural language queries, serving as input to the LLM. The LLM subsequently selects, synthesizes, and executes models provided by OpenAGI to address the task. Furthermore, we propose a Reinforcement Learning from Task Feedback (RLTF) mechanism, which uses the task-solving result as feedback to improve the LLM's task-solving ability. Thus, the LLM is responsible for synthesizing various external models for solving complex tasks, while RLTF provides feedback to improve its task-solving ability, enabling a feedback loop for self-improving AI. We believe that the paradigm of LLMs operating various expert models for complex task-solving is a promising approach towards AGI. To facilitate the community's long-term improvement and evaluation of AGI's ability, we open-source the code, benchmark, and evaluation methods of the OpenAGI project at https://github.com/agiresearch/OpenAGI.Comment: 18 pages, 6 figures, 7 table

    Learning Personalized Risk Preferences for Recommendation

    Full text link
    The rapid growth of e-commerce has made people accustomed to shopping online. Before making purchases on e-commerce websites, most consumers tend to rely on rating scores and review information to make purchase decisions. With this information, they can infer the quality of products to reduce the risk of purchase. Specifically, items with high rating scores and good reviews tend to be less risky, while items with low rating scores and bad reviews might be risky to purchase. On the other hand, the purchase behaviors will also be influenced by consumers' tolerance of risks, known as the risk attitudes. Economists have studied risk attitudes for decades. These studies reveal that people are not always rational enough when making decisions, and their risk attitudes may vary in different circumstances. Most existing works over recommendation systems do not consider users' risk attitudes in modeling, which may lead to inappropriate recommendations to users. For example, suggesting a risky item to a risk-averse person or a conservative item to a risk-seeking person may result in the reduction of user experience. In this paper, we propose a novel risk-aware recommendation framework that integrates machine learning and behavioral economics to uncover the risk mechanism behind users' purchasing behaviors. Concretely, we first develop statistical methods to estimate the risk distribution of each item and then draw the Nobel-award winning Prospect Theory into our model to learn how users choose from probabilistic alternatives that involve risks, where the probabilities of the outcomes are uncertain. Experiments on several e-commerce datasets demonstrate that our approach can achieve better performance than many classical recommendation approaches, and further analyses also verify the advantages of risk-aware recommendation beyond accuracy

    AIOS: LLM Agent Operating System

    Full text link
    The integration and deployment of large language model (LLM)-based intelligent agents have been fraught with challenges that compromise their efficiency and efficacy. Among these issues are sub-optimal scheduling and resource allocation of agent requests over the LLM, the difficulties in maintaining context during interactions between agent and LLM, and the complexities inherent in integrating heterogeneous agents with different capabilities and specializations. The rapid increase of agent quantity and complexity further exacerbates these issues, often leading to bottlenecks and sub-optimal utilization of resources. Inspired by these challenges, this paper presents AIOS, an LLM agent operating system, which embeds large language model into operating systems (OS) as the brain of the OS, enabling an operating system "with soul" -- an important step towards AGI. Specifically, AIOS is designed to optimize resource allocation, facilitate context switch across agents, enable concurrent execution of agents, provide tool service for agents, and maintain access control for agents. We present the architecture of such an operating system, outline the core challenges it aims to resolve, and provide the basic design and implementation of the AIOS. Our experiments on concurrent execution of multiple agents demonstrate the reliability and efficiency of our AIOS modules. Through this, we aim to not only improve the performance and efficiency of LLM agents but also to pioneer for better development and deployment of the AIOS ecosystem in the future. The project is open-source at https://github.com/agiresearch/AIOS.Comment: 14 pages, 5 figures, 5 tables; comments and suggestions are appreciate

    GenRec: Large Language Model for Generative Recommendation

    Full text link
    In recent years, large language models (LLM) have emerged as powerful tools for diverse natural language processing tasks. However, their potential for recommender systems under the generative recommendation paradigm remains relatively unexplored. This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data. In this paper, we present a novel LLM for generative recommendation (GenRec) that utilized the expressive power of LLM to directly generate the target item to recommend, rather than calculating ranking score for each candidate item one by one as in traditional discriminative recommendation. GenRec uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation. Our proposed approach leverages the vast knowledge encoded in large language models to accomplish recommendation tasks. We first we formulate specialized prompts to enhance the ability of LLM to comprehend recommendation tasks. Subsequently, we use these prompts to fine-tune the LLaMA backbone LLM on a dataset of user-item interactions, represented by textual data, to capture user preferences and item characteristics. Our research underscores the potential of LLM-based generative recommendation in revolutionizing the domain of recommendation systems and offers a foundational framework for future explorations in this field. We conduct extensive experiments on benchmark datasets, and the experiments shows that our GenRec has significant better results on large dataset

    Fairness in Recommendation: Foundations, Methods and Applications

    Full text link
    As one of the most pervasive applications of machine learning, recommender systems are playing an important role on assisting human decision making. The satisfaction of users and the interests of platforms are closely related to the quality of the generated recommendation results. However, as a highly data-driven system, recommender system could be affected by data or algorithmic bias and thus generate unfair results, which could weaken the reliance of the systems. As a result, it is crucial to address the potential unfairness problems in recommendation settings. Recently, there has been growing attention on fairness considerations in recommender systems with more and more literature on approaches to promote fairness in recommendation. However, the studies are rather fragmented and lack a systematic organization, thus making it difficult to penetrate for new researchers to the domain. This motivates us to provide a systematic survey of existing works on fairness in recommendation. This survey focuses on the foundations for fairness in recommendation literature. It first presents a brief introduction about fairness in basic machine learning tasks such as classification and ranking in order to provide a general overview of fairness research, as well as introduce the more complex situations and challenges that need to be considered when studying fairness in recommender systems. After that, the survey will introduce fairness in recommendation with a focus on the taxonomies of current fairness definitions, the typical techniques for improving fairness, as well as the datasets for fairness studies in recommendation. The survey also talks about the challenges and opportunities in fairness research with the hope of promoting the fair recommendation research area and beyond.Comment: Accepted by ACM Transactions on Intelligent Systems and Technology (TIST

    Counterfactual Collaborative Reasoning

    Full text link
    Causal reasoning and logical reasoning are two important types of reasoning abilities for human intelligence. However, their relationship has not been extensively explored under machine intelligence context. In this paper, we explore how the two reasoning abilities can be jointly modeled to enhance both accuracy and explainability of machine learning models. More specifically, by integrating two important types of reasoning ability -- counterfactual reasoning and (neural) logical reasoning -- we propose Counterfactual Collaborative Reasoning (CCR), which conducts counterfactual logic reasoning to improve the performance. In particular, we use recommender system as an example to show how CCR alleviate data scarcity, improve accuracy and enhance transparency. Technically, we leverage counterfactual reasoning to generate "difficult" counterfactual training examples for data augmentation, which -- together with the original training examples -- can enhance the model performance. Since the augmented data is model irrelevant, they can be used to enhance any model, enabling the wide applicability of the technique. Besides, most of the existing data augmentation methods focus on "implicit data augmentation" over users' implicit feedback, while our framework conducts "explicit data augmentation" over users explicit feedback based on counterfactual logic reasoning. Experiments on three real-world datasets show that CCR achieves better performance than non-augmented models and implicitly augmented models, and also improves model transparency by generating counterfactual explanations

    The evolving landscape of big data analytics and ESG materiality mapping

    Full text link
    Raging hurricanes, devastating floods, sea-level rise, heatwaves, and other extreme weather conditions are now attributed to climate change. The authors propose that climate change poses a significant investment risk in terms of economic losses and societal disruptions such as migration, infectious diseases, and increasing vulnerability of exposure to more frequently recurring weather events. They discuss optimum utilization of big data and data analytics along with artificial intelligence to assess the materiality of these potential risks in portfolios. Further, they highlight emerging and established approaches through two case studies to highlight how the overall investment management community can benchmark its exposure, risk, and vulnerabilities, coupled with future impacts and building resiliency, across portfolio management and investments.Abstrac
    corecore