2,204 research outputs found

    Cross-lingual Distillation for Text Classification

    Full text link
    Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories. This paper presents a novel approach to CLTC that builds on model distillation, which adapts and extends a framework originally proposed for model compression. Using soft probabilistic predictions for the documents in a label-rich language as the (induced) supervisory labels in a parallel corpus of documents, we train classifiers successfully for new languages in which labeled training data are not available. An adversarial feature adaptation technique is also applied during the model training to reduce distribution mismatch. We conducted experiments on two benchmark CLTC datasets, treating English as the source language and German, French, Japan and Chinese as the unlabeled target languages. The proposed approach had the advantageous or comparable performance of the other state-of-art methods.Comment: Accepted at ACL 2017; Code available at https://github.com/xrc10/cross-distil

    Solving 2D QCD with an adjoint fermion analytically

    Get PDF
    We present an analytic approach to solving 1+1 dimensional QCD with an adjoint Majorana fermion. In the UV this theory is described by a trivial CFT containing free fermions. The quasi-primary operators of this CFT lead to a discrete basis of states which is useful for diagonalizing the Hamiltonian of the full strongly interacting theory. Working at large-NN, we find that the decoupling of high scaling-dimension quasi-primary operators from the low-energy spectrum occurs exponentially fast in their scaling-dimension. This suggests a scheme, whereby, truncating the basis to operators of dimension below Ξ”max\Delta_{max}, one can calculate the low-energy spectrum, parametrically to an accuracy of eβˆ’Ξ”maxe^{-\Delta_{max}} (although the precise accuracy depends on the state). Choosing Ξ”max=9.5\Delta_{max} =9.5 we find very good agreement with the known spectrum obtained earlier by numerical DLCQ methods. Specifically, below the first three-particle threshold, we are able to identify all six single-particle bound-states, as well as several two-particle thresholds.Comment: 26 pages, 5 figures; v2: some typos correcte

    Low-energy effective descriptions of Dark Matter detection and QCD spectroscopy

    Full text link
    In this dissertation, a low energy theory approach is applied to the studies of Dark Matter direct detection experiments and two-dimensional Quantum Chromodynamics (QCD) spectra. We build a general framework of non-relativistic effective field theory of Dark Matter direct detection using non-relativistic operators. Any Dark Matter particle theory can be translated into the coefficients of an effective operator and any effective operator can be related to a most general description of the nuclear response. Response functions are evaluated for common Dark Matter targets. Based on the effective field theory we perform an analysis of the experimental constraints on the full parameter space of elastically scattering Dark Matter. We also formulate an analytic approach to solving two-dimensional gauge theories. We find that in theories with confinement, in a conformal operator basis, the decoupling of high scaling-dimension operators from the low-energy spectrum occurs exponentially fast in their scaling-dimension. Consequently the low-energy spectrum of a strongly coupled system like QCD can be calculated using a truncated conformal basis, to an accuracy parametrized exponentially by the cutoff dimension. We apply the conformal basis approach in two models, a two-dimensional QCD with an adjoint fermion at large N, and a two-dimensional QCD with a fundamental fermion at finite N. It is shown that the low energy spectrum converges efficiently in both cases

    Low-energy effective descriptions of Dark Matter detection and QCD spectroscopy

    Full text link
    In this dissertation, a low energy theory approach is applied to the studies of Dark Matter direct detection experiments and two-dimensional Quantum Chromodynamics (QCD) spectra. We build a general framework of non-relativistic effective field theory of Dark Matter direct detection using non-relativistic operators. Any Dark Matter particle theory can be translated into the coefficients of an effective operator and any effective operator can be related to a most general description of the nuclear response. Response functions are evaluated for common Dark Matter targets. Based on the effective field theory we perform an analysis of the experimental constraints on the full parameter space of elastically scattering Dark Matter. We also formulate an analytic approach to solving two-dimensional gauge theories. We find that in theories with confinement, in a conformal operator basis, the decoupling of high scaling-dimension operators from the low-energy spectrum occurs exponentially fast in their scaling-dimension. Consequently the low-energy spectrum of a strongly coupled system like QCD can be calculated using a truncated conformal basis, to an accuracy parametrized exponentially by the cutoff dimension. We apply the conformal basis approach in two models, a two-dimensional QCD with an adjoint fermion at large N, and a two-dimensional QCD with a fundamental fermion at finite N. It is shown that the low energy spectrum converges efficiently in both cases
    • …
    corecore