77 research outputs found

    A Guideline for Silicon Carbide MOSFET Thermal Characterization based on Source-Drain Voltage

    Full text link
    Thermal transient measurement based on source-drain voltage is a standard method to characterize thermal properties of silicon semiconductors but is doubtful to be directly applied to silicon carbide (SiC) devices. To evaluate its feasibility and limitations, this paper conducts a comprehensive investigation into its accuracy, resolution, and stability towards yielding the structure information of SiC MOSFET using the source-drain voltage as the temperature sensitive electrical parameter. The whole characterization process involves two main procedures and associated key testing parameters, such as gate voltages, sensing and heating currents, etc. Their impacts on both the static and dynamic performances are also investigated with the aim of providing a guideline for conducting a reproducible thermal transient measurement for SiC MOSFETs

    A single-cell analysis of the molecular lineage of chordate embryogenesis

    Get PDF
    Progressive unfolding of gene expression cascades underlies diverse embryonic lineage development. Here, we report a single-cell RNA sequencing analysis of the complete and invariant embryonic cell lineage of the tunicate Ciona savignyi from fertilization to the onset of gastrulation. We reconstructed a developmental landscape of 47 cell types over eight cell cycles in the wild-type embryo and identified eight fate transformations upon fibroblast growth factor (FGF) inhibition. For most FGF-dependent asymmetric cell divisions, the bipotent mother cell displays the gene signature of the default daughter fate. In convergent differentiation of the two notochord lineages, we identified additional gene pathways parallel to the master regulator T/Brachyury. Last, we showed that the defined Ciona cell types can be matched to E6.5-E8.5 stage mouse cell types and display conserved expression of limited number of transcription factors. This study provides a high-resolution single-cell dataset to understand chordate early embryogenesis and cell lineage differentiation

    An anisotropic nanocomposite hydrogel guides aligned orientation and enhances tenogenesis of human tendon stem/progenitor cells

    Get PDF
    The uniform and aligned arrangement of tendon cells is a marker of tendon tissue morphology and the embodiment of its biological anisotropy. However, most of the hydrogels used for tendon tissue engineering do not present anisotropic structures. In this work, a magnetically-responsive nanocomposite hydrogel composed of collagen type I (COL I) and aligned iron oxide nanoparticles (IOPs) was investigated for potential application in tendon tissue engineering. COL I with a mixture of remotely aligned IOPs (A/IOPs) and human tendon stem/progenitor cells (COL I-A/IOPs-hTSPCs) was prepared and the alignment of IOPs was induced under a remote magnetic field. Following the gelation of COL I, a stable and anisotropic nanocomposite COL I-A/IOPs hydrogel was formed. In addition, hTSPCs embedded in COL I with random IOPs (COL I-R/IOPs-hTSPCs) and in pure COL I (COL I-hTSPCs) were used as control groups. Cell viability, proliferation, morphology, cell row formation, and alignment of IOPs and hTSPCs were evaluated over time. In addition, a comprehensive gene expression profile of 48 different genes, including tendon-related genes and lineage/cross-linking genes, was obtained by implementing designer quantitative RT-PCR plates. The hTSPCs morphology followed the orientation of the anisotropic COL I-A/IOPs hydrogel with increased row formation in comparison to pristine COL I and COL-R/IOPs. Moreover, higher proliferation rate and significant upregulation of tendon gene markers were measured in comparison to hTSPCs cultivated in the COL I-R/IOPs and COL I. Thus, we suggest that providing the cells with aligned focal contact points, namely the aligned IOPs, is sufficient to provoke an immense effect on the formation of aligned cell rows. Taken together, we report a novel strategy for directing stem cell behavior without the use of exogenous growth factors or pre-aligned COL I fibers, and propose that anisotropic nanocomposite hydrogels hold great potential for tendon tissue engineering applications

    Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species of the bear family (<it>Ursidae</it>) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (<it>Ursus americanus</it>).</p> <p>Results</p> <p>Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (<it>PLN</it>), cysteine glycine-rich protein 3 (<it>CSRP3</it>) and Troponin I type 3 (<it>TNNI3</it>), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (<it>BPHL</it>) and <it>CSRP3</it>, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes.</p> <p>Conclusion</p> <p>We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.</p

    Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells and their reprogramming in mouse chimeras

    Get PDF
    Stem cells can be derived from the embryo (embryonic stem cells, ESCs), from adult tissues (adult stem cells, ASCs), and by induction of fibroblasts (induced pluripotent stem cells, iPSs). Ethical problems, immunological rejection, and difficulties in obtaining human tissues limit the use of ESCs in clinical medicine. Induced pluripotent stem cells are difficult to maintain in vitro and carry a greater risk of tumor formation. Furthermore, the complexity of maintenance and propagation is especially difficult in the clinic. Adult stem cells can be isolated from several adult tissues and present the possibility of self-transplantation for the clinical treatment of a variety of human diseases. Recently, several ASCs have been successfully isolated and cultured in vitro, including hematopoietic stem cells (HSCs) , mesenchymal stem cells (MSCs), epidermis stem cells, neural stem cells (NSCs), adipose-derived stem cells (ADSCs), islet stem cells, and germ line stem cells. Human mesenchymal stem cells originate mainly from bone marrow, cord blood, and placenta, but epidermis-derived MSCs have not yet been isolated. We isolated small spindle-shaped cells with strong proliferative potential during the culture of human epidermis cells and designed a medium to isolate and propagate these cells. They resembled MSCs morphologically and demonstrated pluripotency in vivo; thus, we defined these cells as human epidermis-derived mesenchymal stem cell-like pluripotent cells (hEMSCPCs). These hEMSCPCs present a possible new cell resource for tissue engineering and regenerative medicine

    A Coq Formalization of Unification Modulo Exclusive-Or

    No full text
    Equational Unification is a critical problem in many areas such as automated theorem proving and security protocol analysis. In this paper, we focus on XORUnification, that is, unification modulo the theory of exclusive-or. This theory contains a function with the properties Associativity, Commutativity, Nilpotency, and the presence of an identity. In the proof assistant Coq, we implement an algorithm inspired by Liu and Lynch’s inference rules and prove it sound, complete, and terminating. Using Coq’s code extraction capability one obtains an implementation in the programming language Ocaml
    • …
    corecore