66 research outputs found

    Structures and growth pathways of AunCln+3-(n≀7) cluster anions

    Get PDF
    Gold chloride clusters play an important role in catalysis and materials chemistry. Due to the diversity of their species and isomers, there is still a dearth of structural studies at the molecular level. In this work, anions of AunCln+3- and AunCln+5- (n = 2–4) clusters were obtained by laser desorption/ionization mass spectrometry (LDI MS), and the most stable isomers of AunCln+3- were determined after a thorough search and optimization at the TPSSh/aug-cc-pVTZ/ECP60MDF level. The results indicate that all isomers with the lowest energy have a planar zigzag skeleton. In each species, there is one Au(III) atom at the edge connected with four Cl atoms, which sets it from the other Au(I) atoms. Four growth pathways for AunCln+3- (n = 2–7) clusters are proposed (labelled R1, R2, R3 and R4). They are all associated with an aurophilic contact and are exothermic. The binding energies tend to stabilize at ~ −41 kcal/mol when the size of the cluster increases in all pathways. The pathway R1, which connects all the most stable isomers of the respective clusters, is characterized by cluster growth due to aurophilic interactions at the terminal atom of Au(I) in the zigzag chains. In the pathway of R4 involving Au-Au bonding in its initial structures (n ≀ 3), the distance between intermediate gold atoms grows with cluster size, ultimately resulting in the transfer of the intermediate Au-Au bonding into aurophilic interaction. The size effect on the structure and aurophilic interactions of these clusters will be better understood based on these discoveries, potentially providing new insights into the active but elusive chemical species involved in the corresponding catalytic reactions or nanoparticle synthesis processes

    High-speed, scanned laser structuring of multi-layered eco/bioresorbable materials for advanced electronic systems

    Get PDF
    Physically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates. Component-level demonstrations span passive and active devices, including diodes and field-effect transistors. Patterning these devices into interconnected layouts yields functional systems, as illustrated in examples that range from wireless implants as monitors of neural and cardiac activity, to thermal probes of microvascular flow, and multi-electrode arrays for biopotential sensing. These advances create important processing options for eco/bioresorbable materials and associated electronic systems, with immediate applicability across nearly all types of bioelectronic studies

    All-optical format conversion-based flexible optical interconnection using nonlinear MZI with nested-pump assisted NOLM

    Get PDF
    An all-optical format conversion (AOFC) scheme of star-m-ary quadrature amplitude modulation (star-mQAM) based on a nonlinear Mach-Zehnder interferometer (MZI) with nested-pump assisted nonlinear optical loop mirror (nested-PA-NOLM) is proposed and numerically simulated. In this scheme, input multi-Gbps star-8QAM signals can be converted into three quadrature phase shift keying (QPSK) signals (namely QPSK-A, -B and -C) through the PA-NOLM under different input power of the signal and the pump. The nonlinear MZI is formed by two PA-NOLMs of the upper and the lower arms, the former and the latter 3-dB optical couplers (OCs), a directional variable optical attenuator (VOA) in the upper arm and a directional variable phase shifter (VPS) in the lower arm. A VOA and a VPS are used to adjust the power ratio (PR) and relative phase shift (RPS) between any two of QPSK-A, -B and -C. When any two adjusted signals in QPSK-A, -B and -C are coherently superposed, the aggregated star-8QAM signal can be extracted again. Furthermore, the proposed scheme can also be used to convert the 20 Gbps bipolar 4-ary pulse amplitude modulation (PAM4) signal into two 10 Gbps BPSK signals and a 20 Gbps QPSK signal. When the proposed scheme is combined with the phase-sensitive amplification (PSA), it can also be used to convert one 16QAM into two QPSK signals. The scheme performance is analyzed via constellation diagrams, power waveforms, the error vector magnitude (EVM) and the bit error rate (BER) of the optical signals. The scheme can not only be deployed in optical gateways to connect optical networks using different modulation formats, but also has a potential applied advantage in security information transmission between different optical networks

    Complex 3D microfluidic architectures formed by mechanically guided compressive buckling.

    Get PDF
    Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 ÎŒm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks

    Challenges in internationalization of R&D teams: Impact of foreign technocrats in top management teams on firm innovation

    No full text
    This study explores two reasons for why and when firm innovation may not benefit from the presence of foreign technocrats in top management teams, who represent a ‘minority-in- minority’ status due to their membership of two minority sub-groups (foreigners and technology experts). First, foreign technocrats may face greater social barriers to exert their human capital because their minority-in-minority status brings about twice as much pressure from the majority (the double jeopardy hypothesis). Second, the similarity resulting from the overlap of the two executive groups may render their sub-group peers apprehensive about a loss of self-identity, thus leading to horizontal hostility (the narcissism of minor difference theory). Using a study of 1635 Chinese manufacturing firms to compare the joint effects of similar sub-group peers and CEOs, we find that the overlap of two groups is more likely to play a positive role when these two groups are more heterogeneous

    Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al–12Si)

    No full text
    In order to evaluate the elevated temperature creep performance of the ABOw/Al–12Si composite as a prospective piston crown material, the tensile creep behaviors and creep fracture mechanisms have been investigated in the temperatures range from 250 to 400 °C and the stress range from 50 to 230 MPa using a uniaxial tensile creep test. The creep experimental data can be explained by the creep constitutive equation with stress exponents of 4.03–6.02 and an apparent activation energy of 148.75 kJ/mol. The creep resistance of the ABOw/Al–12Si composite is immensely improved by three orders of magnitude, compared with the unreinforced alloy. The analysis of the ABOw/Al–12Si composite creep data revealed that dislocation climb is the main creep deformation mechanism. The values of the threshold stresses are 37.41, 25.85, and 17.36 at elevated temperatures of 300, 350 and 400 °C, respectively. A load transfer model was introduced to interpret the effect of whiskers on the creep rate of this composite. The creep test data are very close to the predicted values of the model. Finally, the fractographs of the specimens were analyzed by Scanning Electron Microscope (SEM), the fracture mechanisms of the composites at different temperatures were investigated. The results showed that the fracture characteristic of the ABOw/Al–12Si composite exhibited a macroscale brittle feature range from 300 to 400 °C, but a microscopically ductile fracture was observed at 400 °C. Additionally, at a low tensile creep temperature (300 °C), the plastic flow capacity of the matrix was poor, and the whisker was easy to crack and fracture. However, during tensile creep at a higher temperature (400 °C), the matrix was so softened that the whiskers were easily pulled out and interfacial debonding appeared

    Effect of Stand Age on Fine Root Biomass, Production and Morphology in Chinese Fir Plantations in Subtropical China

    No full text
    Despite the great importance of fine roots, which are referred to as roots smaller than 2 mm in diameter, in terms of carbon and nutrient cycling in terrestrial ecosystems, how fine root biomass, production, and turnover rate change with stand development remains poorly understood. Here we assessed the variations of fine root biomass, production, and morphology of trees and understory vegetation in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations at the ages of 7 years old, 17 years old and 25 years old in southern China, representing the sapling, pole and mature stage, respectively. Fine roots of trees and understory vegetation were sampled with sequential coring method to a depth of 60 cm and sliced into 4 layers (0&ndash;15, 15&ndash;30, 30&ndash;45 and 45&ndash;60 cm). Fine root biomass and necromass were highest in the pole stages among these three different aged Chinese fir plantations, although the significant differences were only detected for fine root necromass between 25-year-old and 7-year-old plantations. Fine root biomass of Chinese fir was heterogeneous in both temporal and spatial dimensions. Seasonal variation of fine root biomass in three age groups showed a similar pattern that the standing fine root biomass reached a peak in January and fell to the lowest in July. Vertically, the fine root biomass decreased with the increase of soil depth, but this extinction rate decreased with stand development. The effects of stand age on either total fine root length and surface area, or specific root length were not significant. However, the root tissue density increased significantly with Chinese fir stand ages, which suggested that the fine roots on Chinese fir may resort more to the mycorrhizal associations for the nutrient and water acquisition in the later stage of Chinese fir plantations. In addition to the stand age effect, the fine roots exhibited highly spatial and temporal variations in Chinese plantations, indicating different root foraging strategies for soil nutrient and water acquisition. Therefore, the fine root research not only helps to understand its role in carbon sequestration in terrestrial ecosystem under global climate change, but can also improve our understanding of nutrient management in forest ecosystem. At the same time, the research on the productivity of the Chinese fir growth stage provides guiding significance for the construction and management of Chinese fir
    • 

    corecore