100 research outputs found

    Microstructure and mechanical properties of large size as-cast Ti-43Al-9V-0.2Y (at.%) alloy ingot from brim to centre

    Get PDF
    A Ti-43Al-9V-0.2Y (at.%) alloy ingot with the size of Ф160×400mm was prepared by vacuum arc remelting (VAR). The microstructure of the as-cast Ti-43Al-9V-0.2Y alloy was composed of B2/α₂/γ lamellar colonies and massive B2 and γ phases which were distributed along the boundaries of these lamellar colonies in the form of equiaxed grains. Based on the grain size variation along the radius direction of the ingot, the ingot could be divided into four ring regions from brim to centre. It has been understood that the grain size variation between these four regions was due to the interplay of the effects of the cooling rate and the yttrium content on solidified microstructures in these regions. Mechanical testing of the samples cut from these four regions showed that there existed a clear correlation between the yield strength and the average grain sizes of the four ring regions, which approximately conformed to a Hall-Petch relationship

    Algorithmic Collusion or Competition: the Role of Platforms' Recommender Systems

    Full text link
    Recent academic research has extensively examined algorithmic collusion resulting from the utilization of artificial intelligence (AI)-based dynamic pricing algorithms. Nevertheless, e-commerce platforms employ recommendation algorithms to allocate exposure to various products, and this important aspect has been largely overlooked in previous studies on algorithmic collusion. Our study bridges this important gap in the literature and examines how recommendation algorithms can determine the competitive or collusive dynamics of AI-based pricing algorithms. Specifically, two commonly deployed recommendation algorithms are examined: (i) a recommender system that aims to maximize the sellers' total profit (profit-based recommender system) and (ii) a recommender system that aims to maximize the demand for products sold on the platform (demand-based recommender system). We construct a repeated game framework that incorporates both pricing algorithms adopted by sellers and the platform's recommender system. Subsequently, we conduct experiments to observe price dynamics and ascertain the final equilibrium. Experimental results reveal that a profit-based recommender system intensifies algorithmic collusion among sellers due to its congruence with sellers' profit-maximizing objectives. Conversely, a demand-based recommender system fosters price competition among sellers and results in a lower price, owing to its misalignment with sellers' goals. Extended analyses suggest the robustness of our findings in various market scenarios. Overall, we highlight the importance of platforms' recommender systems in delineating the competitive structure of the digital marketplace, providing important insights for market participants and corresponding policymakers.Comment: 33 pages, 5 figures, 4 table

    What To Do (and Not to Do) with Causal Panel Analysis under Parallel Trends: Lessons from A Large Reanalysis Study

    Full text link
    Two-way fixed effects (TWFE) models are ubiquitous in causal panel analysis in political science. However, recent methodological discussions challenge their validity in the presence of heterogeneous treatment effects (HTE) and violations of the parallel trends assumption (PTA). This burgeoning literature has introduced multiple estimators and diagnostics, leading to confusion among empirical researchers on two fronts: the reliability of existing results based on TWFE models and the current best practices. To address these concerns, we examined, replicated, and reanalyzed 37 articles from three leading political science journals that employed observational panel data with binary treatments. Using six newly introduced HTE-robust estimators, we find that although precision may be affected, the core conclusions derived from TWFE estimates largely remain unchanged. PTA violations and insufficient statistical power, however, continue to be significant obstacles to credible inferences. Based on these findings, we offer recommendations for improving practice in empirical research

    A Close Look at Spatial Modeling: From Attention to Convolution

    Full text link
    Vision Transformers have shown great promise recently for many vision tasks due to the insightful architecture design and attention mechanism. By revisiting the self-attention responses in Transformers, we empirically observe two interesting issues. First, Vision Transformers present a queryirrelevant behavior at deep layers, where the attention maps exhibit nearly consistent contexts in global scope, regardless of the query patch position (also head-irrelevant). Second, the attention maps are intrinsically sparse, few tokens dominate the attention weights; introducing the knowledge from ConvNets would largely smooth the attention and enhance the performance. Motivated by above observations, we generalize self-attention formulation to abstract a queryirrelevant global context directly and further integrate the global context into convolutions. The resulting model, a Fully Convolutional Vision Transformer (i.e., FCViT), purely consists of convolutional layers and firmly inherits the merits of both attention mechanism and convolutions, including dynamic property, weight sharing, and short- and long-range feature modeling, etc. Experimental results demonstrate the effectiveness of FCViT. With less than 14M parameters, our FCViT-S12 outperforms related work ResT-Lite by 3.7% top1 accuracy on ImageNet-1K. When scaling FCViT to larger models, we still perform better than previous state-of-the-art ConvNeXt with even fewer parameters. FCViT-based models also demonstrate promising transferability to downstream tasks, like object detection, instance segmentation, and semantic segmentation. Codes and models are made available at: https://github.com/ma-xu/FCViT

    CB-Conformer: Contextual biasing Conformer for biased word recognition

    Full text link
    Due to the mismatch between the source and target domains, how to better utilize the biased word information to improve the performance of the automatic speech recognition model in the target domain becomes a hot research topic. Previous approaches either decode with a fixed external language model or introduce a sizeable biasing module, which leads to poor adaptability and slow inference. In this work, we propose CB-Conformer to improve biased word recognition by introducing the Contextual Biasing Module and the Self-Adaptive Language Model to vanilla Conformer. The Contextual Biasing Module combines audio fragments and contextual information, with only 0.2% model parameters of the original Conformer. The Self-Adaptive Language Model modifies the internal weights of biased words based on their recall and precision, resulting in a greater focus on biased words and more successful integration with the automatic speech recognition model than the standard fixed language model. In addition, we construct and release an open-source Mandarin biased-word dataset based on WenetSpeech. Experiments indicate that our proposed method brings a 15.34% character error rate reduction, a 14.13% biased word recall increase, and a 6.80% biased word F1-score increase compared with the base Conformer
    corecore