268 research outputs found

    Judging Online Peer-To-Peer Lending Behavior: An Integration of Dual System Framework and Two-Factor Theory

    Get PDF
    The past decade has witnessed a growing number of business models that facilitate economic exchanges between individuals with limited institutional mediation. One of the important innovative business models is online peer-to-peer (P2P) lending, which has received widely attention from government, industry, investors, and researchers. Based on dual system framework and two-factor theory, this research proposes a research model to investigate the role of various signals from the P2P platform in affecting lender’s investment decisions. With data collected from PPDAI, a popular Chinese P2P lending site, we test the proposed model with logistic regression and hierarchical linear model. The results reveal that most of the factors perform significantly in lenders’ decision making. We also find the specific information of an auction itself is more important than borrower’s characteristics to a large degree. Finally, the research emphasizes that bid number performs well in moderating most of the relationships between variables

    Optimized Cartesian KK-Means

    Full text link
    Product quantization-based approaches are effective to encode high-dimensional data points for approximate nearest neighbor search. The space is decomposed into a Cartesian product of low-dimensional subspaces, each of which generates a sub codebook. Data points are encoded as compact binary codes using these sub codebooks, and the distance between two data points can be approximated efficiently from their codes by the precomputed lookup tables. Traditionally, to encode a subvector of a data point in a subspace, only one sub codeword in the corresponding sub codebook is selected, which may impose strict restrictions on the search accuracy. In this paper, we propose a novel approach, named Optimized Cartesian KK-Means (OCKM), to better encode the data points for more accurate approximate nearest neighbor search. In OCKM, multiple sub codewords are used to encode the subvector of a data point in a subspace. Each sub codeword stems from different sub codebooks in each subspace, which are optimally generated with regards to the minimization of the distortion errors. The high-dimensional data point is then encoded as the concatenation of the indices of multiple sub codewords from all the subspaces. This can provide more flexibility and lower distortion errors than traditional methods. Experimental results on the standard real-life datasets demonstrate the superiority over state-of-the-art approaches for approximate nearest neighbor search.Comment: to appear in IEEE TKDE, accepted in Apr. 201

    Generating Human-Centric Visual Cues for Human-Object Interaction Detection via Large Vision-Language Models

    Full text link
    Human-object interaction (HOI) detection aims at detecting human-object pairs and predicting their interactions. However, the complexity of human behavior and the diverse contexts in which these interactions occur make it challenging. Intuitively, human-centric visual cues, such as the involved participants, the body language, and the surrounding environment, play crucial roles in shaping these interactions. These cues are particularly vital in interpreting unseen interactions. In this paper, we propose three prompts with VLM to generate human-centric visual cues within an image from multiple perspectives of humans. To capitalize on these rich Human-Centric Visual Cues, we propose a novel approach named HCVC for HOI detection. Particularly, we develop a transformer-based multimodal fusion module with multitower architecture to integrate visual cue features into the instance and interaction decoders. Our extensive experiments and analysis validate the efficacy of leveraging the generated human-centric visual cues for HOI detection. Notably, the experimental results indicate the superiority of the proposed model over the existing state-of-the-art methods on two widely used datasets

    Federated Class-Incremental Learning with Prompting

    Full text link
    As Web technology continues to develop, it has become increasingly common to use data stored on different clients. At the same time, federated learning has received widespread attention due to its ability to protect data privacy when let models learn from data which is distributed across various clients. However, most existing works assume that the client's data are fixed. In real-world scenarios, such an assumption is most likely not true as data may be continuously generated and new classes may also appear. To this end, we focus on the practical and challenging federated class-incremental learning (FCIL) problem. For FCIL, the local and global models may suffer from catastrophic forgetting on old classes caused by the arrival of new classes and the data distributions of clients are non-independent and identically distributed (non-iid). In this paper, we propose a novel method called Federated Class-Incremental Learning with PrompTing (FCILPT). Given the privacy and limited memory, FCILPT does not use a rehearsal-based buffer to keep exemplars of old data. We choose to use prompts to ease the catastrophic forgetting of the old classes. Specifically, we encode the task-relevant and task-irrelevant knowledge into prompts, preserving the old and new knowledge of the local clients and solving the problem of catastrophic forgetting. We first sort the task information in the prompt pool in the local clients to align the task information on different clients before global aggregation. It ensures that the same task's knowledge are fully integrated, solving the problem of non-iid caused by the lack of classes among different clients in the same incremental task. Experiments on CIFAR-100, Mini-ImageNet, and Tiny-ImageNet demonstrate that FCILPT achieves significant accuracy improvements over the state-of-the-art methods

    6-Benzyl-6,7-dihydro-5H-pyrrolo­[3,4-b]pyridine-5,7-dione

    Get PDF
    In the title compound, C14H10N2O2, the dihedral angle between the heterocyclic ring system and the phenyl ring is 45.8 (5)°. Weak inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure
    corecore