10,315 research outputs found

    Demonstration of Einstein-Podolsky-Rosen Steering with Enhanced Subchannel Discrimination

    Full text link
    Einstein-Podolsky-Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other's state through local measurements. It reveals an additional concept of quantum nonlocality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.Comment: 16 pages, 8 figures, appendix include

    Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-β2 expression by recruiting DNA (cytosine-5-)-methyltransferase 3A

    Get PDF
    Tobacco smoke is an important risk factor for various human cancers, including esophageal cancer. How benzo [a]pyrene diol epoxide (BPDE), a carcinogen present in tobacco smoke as well as in environmental pollution, induces esophageal carcinogenesis has yet to be defined. In this study, we investigated the molecular mechanism responsible for BPDE-suppressed expression of retinoic acid receptor-beta2 (RAR-β2) in esophageal cancer cells. We treated esophageal cancer cells with BPDE before performing methylation-specific polymerase chain reaction (MSP) to find that BPDE induced methylation of the RAR-β2 gene promoter. We then performed chromatin immunoprecipitation (ChIP) assays to find that BPDE recruited genes of the methylation machinery into the RAR-β2 gene promoter. We found that BPDE recruited DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A), but not beta (DNMT3B), in a time-dependent manner to methylate the RAR-β2 gene promoter, which we confirmed by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the reduced RAR-β2 expression in these BPDE-treated esophageal cancer cell lines. However, BPDE did not significantly change DNMT3A expression, but it slightly reduced DNMT3B expression. DNA methylase inhibitor 5-aza-2'-deoxycytidine (5-Aza) and DNMT3A small hairpin RNA (shRNA) vector antagonized the effects of BPDE on RAR-β2 expressions. Transient transfection of the DNMT3A shRNA vector also antagonized BPDE's effects on expression of RAR-β2, c-Jun, phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2), and cyclooxygenase-2 (COX-2), suggesting a possible therapeutic effect. The results of this study form the link between the esophageal cancer risk factor BPDE and the reduced RAR-β2 expression

    Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

    Full text link
    We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.Comment: 10 pages, 11 figures, accepted for publication in A&
    corecore