35 research outputs found

    A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output [preprint]

    Get PDF
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires the precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output

    A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output

    Get PDF
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output

    RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C. elegans

    Get PDF
    Diet affects nearly every aspect of animal life such as development, metabolism, behavior, and aging, both directly by supplying nutrients and indirectly through gut microbiota. C. elegans feeds on bacteria, and like other animals, different bacterial diets induce distinct dietary responses in the worm. However, the lack of certain critical tools hampers the use of worms as a model for dietary signaling. Here, we genetically engineered the bacterial strain OP50, the standard laboratory diet for C. elegans, making it compatible for dsRNA production and delivery. Using this RNAi-compatible OP50 strain and the other bacterial strain HT115, we feed worms different diets while delivering RNAi to interrogate the genetic basis underlying diet-dependent differential modulation of development, metabolism, behavior, and aging. We show by RNAi that neuroendocrine and mTOR pathways are involved in mediating differential dietary responses. This genetic tool greatly facilitates the use of C. elegans as a model for dietary signaling

    Environmental Temperature Differentially Modulates C. elegans Longevity through a Thermosensitive TRP Channel

    Get PDF
    Temperature profoundly affects aging in both poikilotherms and homeotherms. A general belief is that lower temperatures extend lifespan, whereas higher temperatures shorten it. Although this “temperature law” is widely accepted, it has not been extensively tested. Here, we systematically evaluated the role of temperature in lifespan regulation in C. elegans. We found that, although exposure to low temperatures at the adult stage prolongs lifespan, low-temperature treatment at the larval stage surprisingly reduces lifespan. Interestingly, this differential effect of temperature on longevity in larvae and adults is mediated by the same thermosensitive TRP channel TRPA-1 that signals to the transcription factor DAF-16/FOXO. DAF-16/FOXO and TRPA-1 act in larva to shorten lifespan but extend lifespan in adulthood. DAF-16/FOXO differentially regulates gene expression in larva and adult in a temperature-dependent manner. Our results uncover complexity underlying temperature modulation of longevity, demonstrating that temperature differentially regulates lifespan at different stages of life

    Parallel processing of two mechanosensory modalities by a single neuron in C.elegans

    No full text
    Sensory neurons process multiple sensory modalities to generate diverse behaviors. Tao et al. show that the C. elegans PVD neuron detects both proprioceptive and nociceptive stimuli but with distinct sensors. In response, PVD generates two types of depolarization patterns via either dendrite or axon, ultimately leading to distinct behaviors.Neurons convert synaptic or sensory inputs into cellular outputs. It is not well understood how a single neuron senses, processes multiple stimuli, and generates distinct neuronal outcomes. Here, we describe the mechanism by which the C. elegans PVD neurons sense two mechanical stimuli: external touch and proprioceptive body movement. These two stimuli are detected by distinct mechanosensitive DEG/ENaC/ASIC channels, which trigger distinct cellular outputs linked to mechanonociception and proprioception. Mechanonociception depends on DEGT-1 and activates PVD's downstream command interneurons through its axon, while proprioception depends on DEL-1, UNC-8, and MEC-10 to induce local dendritic Ca increase and dendritic release of a neuropeptide NLP-12. NLP-12 directly modulates neuromuscular junction activity through the cholecystokinin receptor homolog on motor axons, setting muscle tone and movement vigor. Thus, the same neuron simultaneously uses both its axon and dendrites as output apparatus to drive distinct sensorimotor outcomes

    Video_3_A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output.MP4

    No full text
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.</p

    Video_1_A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output.MP4

    No full text
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.</p

    Video_2_A C. elegans neuron both promotes and suppresses motor behavior to fine tune motor output.MP4

    No full text
    How neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.</p
    corecore