89 research outputs found

    Perceptual Generative Adversarial Networks for Small Object Detection

    Full text link
    Detecting small objects is notoriously challenging due to their low resolution and noisy representation. Existing object detection pipelines usually detect small objects through learning representations of all the objects at multiple scales. However, the performance gain of such ad hoc architectures is usually limited to pay off the computational cost. In this work, we address the small object detection problem by developing a single architecture that internally lifts representations of small objects to "super-resolved" ones, achieving similar characteristics as large objects and thus more discriminative for detection. For this purpose, we propose a new Perceptual Generative Adversarial Network (Perceptual GAN) model that improves small object detection through narrowing representation difference of small objects from the large ones. Specifically, its generator learns to transfer perceived poor representations of the small objects to super-resolved ones that are similar enough to real large objects to fool a competing discriminator. Meanwhile its discriminator competes with the generator to identify the generated representation and imposes an additional perceptual requirement - generated representations of small objects must be beneficial for detection purpose - on the generator. Extensive evaluations on the challenging Tsinghua-Tencent 100K and the Caltech benchmark well demonstrate the superiority of Perceptual GAN in detecting small objects, including traffic signs and pedestrians, over well-established state-of-the-arts

    DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection

    Full text link
    Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications, particularly in intricate scenarios where conventional RGB-based approaches fall short. Despite the considerable progress in HSOD method advancements, two critical challenges require immediate attention. Firstly, existing hyperspectral data dimension reduction techniques incur a loss of spectral information, which adversely affects detection accuracy. Secondly, previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process. To address these challenges, we propose a novel approach termed the Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral Encoding process and a Mixed Spectral-Spatial Transformer (MSST) feature extraction network. The encoding process utilizes knowledge distillation to construct a lightweight autoencoder for dimension reduction, striking a balance between robust encoding capabilities and low computational costs. The MSST extracts spectral-spatial features through multiple attention head groups, collaboratively enhancing its resistance to intricate scenarios. Moreover, we have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field and meet the fundamental data requirements of deep network training. Extensive experiments demonstrate that our proposed DMSSN achieves state-of-the-art performance on multiple datasets. We will soon make the code and dataset publicly available on https://github.com/anonymous0519/HSOD-BIT

    FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection

    Full text link
    3D object detection with multi-sensors is essential for an accurate and reliable perception system of autonomous driving and robotics. Existing 3D detectors significantly improve the accuracy by adopting a two-stage paradigm which merely relies on LiDAR point clouds for 3D proposal refinement. Though impressive, the sparsity of point clouds, especially for the points far away, making it difficult for the LiDAR-only refinement module to accurately recognize and locate objects.To address this problem, we propose a novel multi-modality two-stage approach named FusionRCNN, which effectively and efficiently fuses point clouds and camera images in the Regions of Interest(RoI). FusionRCNN adaptively integrates both sparse geometry information from LiDAR and dense texture information from camera in a unified attention mechanism. Specifically, it first utilizes RoIPooling to obtain an image set with a unified size and gets the point set by sampling raw points within proposals in the RoI extraction step; then leverages an intra-modality self-attention to enhance the domain-specific features, following by a well-designed cross-attention to fuse the information from two modalities.FusionRCNN is fundamentally plug-and-play and supports different one-stage methods with almost no architectural changes. Extensive experiments on KITTI and Waymo benchmarks demonstrate that our method significantly boosts the performances of popular detectors.Remarkably, FusionRCNN significantly improves the strong SECOND baseline by 6.14% mAP on Waymo, and outperforms competing two-stage approaches. Code will be released soon at https://github.com/xxlbigbrother/Fusion-RCNN.Comment: 7 pages, 3 figure

    Dynamic Loss For Robust Learning

    Full text link
    Label noise and class imbalance commonly coexist in real-world data. Previous works for robust learning, however, usually address either one type of the data biases and underperform when facing them both. To mitigate this gap, this work presents a novel meta-learning based dynamic loss that automatically adjusts the objective functions with the training process to robustly learn a classifier from long-tailed noisy data. Concretely, our dynamic loss comprises a label corrector and a margin generator, which respectively correct noisy labels and generate additive per-class classification margins by perceiving the underlying data distribution as well as the learning state of the classifier. Equipped with a new hierarchical sampling strategy that enriches a small amount of unbiased metadata with diverse and hard samples, the two components in the dynamic loss are optimized jointly through meta-learning and cultivate the classifier to well adapt to clean and balanced test data. Extensive experiments show our method achieves state-of-the-art accuracy on multiple real-world and synthetic datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision. Code will soon be publicly available

    Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions

    Full text link
    Robust 3D perception under corruption has become an essential task for the realm of 3D vision. While current data augmentation techniques usually perform random transformations on all point cloud objects in an offline way and ignore the structure of the samples, resulting in over-or-under enhancement. In this work, we propose an alternative to make sample-adaptive transformations based on the structure of the sample to cope with potential corruption via an auto-augmentation framework, named as AdaptPoint. Specially, we leverage a imitator, consisting of a Deformation Controller and a Mask Controller, respectively in charge of predicting deformation parameters and producing a per-point mask, based on the intrinsic structural information of the input point cloud, and then conduct corruption simulations on top. Then a discriminator is utilized to prevent the generation of excessive corruption that deviates from the original data distribution. In addition, a perception-guidance feedback mechanism is incorporated to guide the generation of samples with appropriate difficulty level. Furthermore, to address the paucity of real-world corrupted point cloud, we also introduce a new dataset ScanObjectNN-C, that exhibits greater similarity to actual data in real-world environments, especially when contrasted with preceding CAD datasets. Experiments show that our method achieves state-of-the-art results on multiple corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and ShapeNet-C.Comment: Accepted by ICCV2023; code: https://github.com/Roywangj/AdaptPoin
    corecore