68 research outputs found

    Identification of spatial and temporal patterns of Australian daily rainfall under a changing climate

    Get PDF
    Rainfall is a highly variable component of the climate system. There are substantial spatial and temporal variations in the frequency and spatial distribution of rainfall events. Little attention has been paid to the slow but ongoing variations of the spatial patterns of daily rainfall, especially over broad spatial scales. A better understanding of these variations and their long term trends would reduce uncertainty in environmental and natural resource models and improve assessment of ongoing climate change. This study examined the spatial cross-correlations of daily rainfall at 2322 high quality long run rainfall stations across Australia from 1910 to 2011, and assessed their spatial and temporal patterns. It was found that: 1) There has been a long term continuous strengthening in the spatial cross-correlation of daily rainfall across Australia over this period. Most of this strengthening has occurred since the 1970s; 2) The strengthening is more consistent in winter and spring but has occurred in all four seasons; 3) Southeastern Australia has had the most stable strengthening pattern over a broader spatial scale; 4) The strengthening suggests an increase in the broad scale coherence of daily rainfall, such as found in frontal rainfall; 5) These findings are consistent with recent reported changes in synoptic scale climatic driving processes, especially the increasing frequency of frontal systems and the decreasing frequency of storm events in the Australian region. An increase in the broad scale coherence of rainfall is likely to improve the accuracy of daily rainfall interpolation and influence dependent hydrological modelling. Interactions of data quality with the derived correlation patterns are also discussed

    Imaging Neural Activity in the Primary Somatosensory Cortex Using Thy1-GCaMP6s Transgenic Mice

    Get PDF
    The mammalian brain exhibits marked symmetry across the sagittal plane. However, detailed description of neural dynamics in symmetric brain regions in adult mammalian animals remains elusive. In this study, we describe an experimental procedure for measuring calcium dynamics through dual optical windows above bilateral primary somatosensory corticies (S1) in Thy1-GCaMP6s transgenic mice using 2-photon (2P) microscopy. This method enables recordings and quantifications of neural activity in bilateral mouse brain regions one at a time in the same experiment for a prolonged period in vivo. Key aspects of this method, which can be completed within an hour, include minimally invasive surgery procedures for creating dual optical windows, and the use of 2P imaging. Although we only demonstrate the technique in the S1 area, the method can be applied to other regions of the living brain facilitating the elucidation of structural and functional complexities of brain neural networks

    Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    Get PDF
    In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithmwas proposed,which extracted visual attention features through amultiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to performhigh resolution remote sensing scene classification. FCVAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices.We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing imagesThis paper was supported by the National Natural Science Foundation of China (Grant no. 41371343)

    Assessment of Reclamation Treatments of Abandoned Farmland in an Arid Region of China

    Get PDF
    Reclamation of abandoned farmland is crucial to a sustainable agriculture in arid regions. This study aims to evaluate the impact of different reclamation treatments on abandoned salinized farmland. We investigated four artificial reclamation treatments, continuous cotton (CC), continuous alfalfa (CA), tree-wheat intercropping (TW) and trees (TS), which were conducted in 2011–2012 in the Manasi River Basin of Xinjiang Province, China. Soil nutrient, microorganism and enzyme activity were examined in comparison with natural succession (CK) in an integrated analysis on soil fertility improvement and soil salinization control with these reclamations. Results indicate that the four artificial reclamation treatments are more effective approaches than natural restoration to reclaim abandoned farmland. TW and CA significantly increased soil nutrient content compared to CK. CC reduced soil salinity to the lowest level among all treatments. TW significantly enhanced soil enzyme activity. All four artificial reclamations increased soil microbial populations and soil microbial biomass carbon. TW and CA had the greatest overall optimal effects among the four treatments in terms of the ecological outcomes. If both economic benefits and ecological effects are considered, TW would be the best reclamation mode. The findings from this study will assist in selecting a feasible method for reclamation of abandoned farmland for sustainable agriculture in arid regions.This research was supported by the Special Fund for Agro-scientific Research in the Public Interest (201503120); Science and Technology Research and Achievement Transformation Project of The Xinjiang Production and Construction Crops (2016AD022); and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2014BAC14B03)

    Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm

    No full text
    Mapping the spatio-temporal characteristics of wetland inundation has an important significance to the study of wetland environment and associated flora and fauna. High temporal remote sensing imagery is widely used for this purpose with the limitations of relatively low spatial resolutions. In this study, a novel method based on integration of back-propagation neural network (BP) and genetic algorithm (GA), so-called IBPGA, is proposed for super-resolution mapping of wetland inundation (SMWI) from multispectral remote sensing imagery. The IBPGA-SMWI algorithm is developed, including the fitness function and integration search strategy. IBPGA-SMWI was evaluated using Landsat TM/ETM + imagery from the Poyanghu wetland in China and the Macquarie Marshes in Australia. Compared with traditional SMWI methods, IBPGA-SMWI consistently achieved more accurate super-resolution mapping results in terms of visual and quantitative evaluations. In comparison with GA-SMWI, IBPGA-SMWI not only improved the accuracy of SMWI, but also accelerated the convergence speed of the algorithm. The sensitivity analysis of IBPGA-SMWI in relation to standard crossover rate, BP crossover rate and mutation rate was also carried out to discuss the algorithm performance. It is hoped that the results of this study will enhance the application of median-low resolution remote sensing imagery in wetland inundation mapping and monitoring, and ultimately support the studies of wetland environment.This paper was supported by the National Natural Science Foundation of China (Grant No. 41371343 and Grant No. 41001255) and the scholarship provided by the China Scholarship Council (Grant No. 201308420290)

    Urban expansion and agricultural land loss in China: A multiscale perspective

    Get PDF
    China’s rapid urbanization has contributed to a massive agricultural land loss that could threaten its food security. Timely and accurate mapping of urban expansion and urbanization-related agricultural land loss can provide viable measures to be taken for urban planning and agricultural land protection. In this study, urban expansion in China from 2001 to 2013 was mapped using the nighttime stable light (NSL), normalized difference vegetation index (NDVI), and water body data. Urbanization-related agricultural land loss during this time period was then evaluated at national, regional, and metropolitan scales by integrating multiple sources of geographic data. The results revealed that China’s total urban area increased from 31,076 km2 in 2001 to 80,887 km2 in 2013, with an average annual growth rate of 13.36%. This widespread urban expansion consumed 33,080 km2 of agricultural land during this period. At a regional scale, the eastern region lost 18,542 km2 or 1.2% of its total agricultural land area. At a metropolitan scale, the Shanghai–Nanjing–Hangzhou (SNH) and Pearl River Delta (PRD) areas underwent high levels of agricultural land loss with a decrease of 6.12% (4728 km2) and 6.05% (2702 km2) of their total agricultural land areas, respectively. Special attention should be paid to the PRD, with a decline of 13.30% (1843 km2) of its cropland. Effective policies and strategies should be implemented to mitigate urbanization-related agricultural land loss in the context of China’s rapid urbanization

    Transplantation of Pro-Oligodendroblasts, Preconditioned by LPS-Stimulated Microglia, Promotes Recovery After Acute Contusive Spinal Cord Injury

    Get PDF
    Spinal cord injury (SCI) is a significant clinical challenge, and to date no effective treatment is available. Oligodendrocyte progenitor cell (OPC) transplantation has been a promising strategy for SCI repair. However, the poor posttransplantation survival and deficiency in differentiation into myelinating oligodendrocytes (OLs) are two major challenges that limit the use of OPCs as donor cells. Here we report the generation of an OL lineage population [i.e., pro-oligodendroblasts (proOLs)] that is relatively more mature than OPCs for transplantation after SCI. We found that proOLs responded to lipopolysaccharide (LPS)-stimulated microglia conditioned medium (L+M) by preserving toll-like receptor 4 (TLR4) expression, improving cell viability, and enhancing the expression of a myelinating OL marker myelin basic protein (MBP), compared to other OL lineage cells exposed to either LPS-stimulated (L+M) or nonstimulated microglia conditioned medium (L−M). When L+M-stimulated proOLs were intrathecally delivered through a lumbar puncture after a T10 thoracic contusive SCI, they promoted behavioral recovery, as assessed by the Basso‐Beattie‐Bresnahan (BBB) locomotor rating scale, stride length, and slips on the grid tests. Histologically, transplantation of L+M proOLs caused a considerable increase in intralesional axon numbers and myelination, and less accumulation of invading macrophages when compared with the vehicle control or OPC transplantation. Thus, transplantation of proOLs, preconditioned by L+M, may offer a better therapeutic potential for SCI than OPCs since the former may have initiated the differentiation process toward OLs prior to transplantation

    Monogenean fauna of alien tilapias (Cichlidae) in south China

    Get PDF
    Tilapias are important aquaculture fishes that have been introduced widely all over the world, often carrying their monogenean parasites with them. An extensive investigation on monogeneans of invasive tilapias was conducted in 19 natural water sources in south China between July 2015 and December 2017. We found nine known species of monogeneans, i.e., Enterogyrus coronatus, E. malmbergi, Cichlidogyrus cirratus, C. halli, C. sclerosus, C. thurstonae, C. tilapiae, Scutogyrus longicornis, Gyrodactylus cichlidarum, and one unknown Gyrodactylus species. In addition to reporting ten new hosts and four new geographical records, we observed new morphological characteristics of these species. Observation on living specimens of Enterogyrus spp. demonstrated that these two species have characteristic opisthaptoral retraction capacities, while the opisthaptor glands were not observed in our specimens of E. coronatus and E. malmbergi. The morphological differences of the accessory piece of the male copulatory complex between C. cirratus and C. mbirizei (character for species differentiation) could result from the observation at different perspectives, which indicates that C. mbirizei is likely a synonym of C. cirratus. A more detailed structure of the sclerotized parts of Cichlidogyrus spp. and S. longicornis were revealed by scanning electron microscopy. As was the case for the monogeneans found on alien tilapias from other geographic regions, the present study confirmed the high potential of these monogeneans to establish populations in new habitats

    Changing climate and implications for water use in the Hetao Basin, Yellow River, China

    Get PDF
    Balancing water allocations in river basins between upstream irrigated agriculture and downstream cities, industry and environments is a global challenge. The effects of changing allocations are exemplified in the arid Hetao Irrigation District on the Yellow River, one of China’s three largest irrigation districts. Amongst the many challenges there, the impact of changing climate on future irrigation water demand is an underlying concern. In this paper we analyse trends in local climate data from the late 1950s and consider the implications for irrigation in the Basin. Since 1958, daily minimum temperatures, Tmin in the Basin have increased at three times the rate of daily maximum temperatures, Tmax. Despite this, there has been no significant increases in annual precipitation, P or pan evaporation, Epan. The difference between the increasing trends in Tmax and Tmin means that the average annual diurnal temperature range, DTR, has decreased very significantly, part of a global phenomenon. Hargreaves empirical approach is used to estimate changes in both incoming solar radiation, Rs, and potential evaporation, ET0. Changes in estimated ET0 correlated well with changes in measured pan evaporation, Epan. Paradoxically, the estimated decreasing trend in Rs does not correspond to a significant decreasing trend in Epan. Implications of changing climate on water use and soil salinity in the Basin are discussed.This research has been supported by the Major Special Project of Inner Mongolia Science and Technology: Research and Demonstration of the Key Technologies of Drip Irrigation Using the Multi-source of Water in Yellow River Irrigation Areas of Inner Mongolia (grant no. 2013-2017)
    corecore