154 research outputs found

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    A Distributed and Robust Energy Management System for Networked Hybrid AC/DC Microgrids

    Get PDF

    LabelPrompt: Effective Prompt-based Learning for Relation Classification

    Full text link
    Recently, prompt-based learning has become a very popular solution in many Natural Language Processing (NLP) tasks by inserting a template into model input, which converts the task into a cloze-style one to smoothing out differences between the Pre-trained Language Model (PLM) and the current task. But in the case of relation classification, it is difficult to map the masked output to the relation labels because of its abundant semantic information, e.g. org:founded_by''. Therefore, a pre-trained model still needs enough labelled data to fit the relations. To mitigate this challenge, in this paper, we present a novel prompt-based learning method, namely LabelPrompt, for the relation classification task. It is an extraordinary intuitive approach by a motivation: ``GIVE MODEL CHOICES!''. First, we define some additional tokens to represent the relation labels, which regards these tokens as the verbalizer with semantic initialisation and constructs them with a prompt template method. Then we revisit the inconsistency of the predicted relation and the given entities, an entity-aware module with the thought of contrastive learning is designed to mitigate the problem. At last, we apply an attention query strategy to self-attention layers to resolve two types of tokens, prompt tokens and sequence tokens. The proposed strategy effectively improves the adaptation capability of prompt-based learning in the relation classification task when only a small labelled data is available. Extensive experimental results obtained on several bench-marking datasets demonstrate the superiority of the proposed LabelPrompt method, particularly in the few-shot scenario

    Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking

    Get PDF
    We propose a new Group Feature Selection method for Discriminative Correlation Filters (GFS-DCF) based visual object tracking. The key innovation of the proposed method is to perform group feature selection across both channel and spatial dimensions, thus to pinpoint the structural relevance of multi-channel features to the filtering system. In contrast to the widely used spatial regularisation or feature selection methods, to the best of our knowledge, this is the first time that channel selection has been advocated for DCF-based tracking. We demonstrate that our GFS-DCF method is able to significantly improve the performance of a DCF tracker equipped with deep neural network features. In addition, our GFS-DCF enables joint feature selection and filter learning, achieving enhanced discrimination and interpretability of the learned filters. To further improve the performance, we adaptively integrate historical information by constraining filters to be smooth across temporal frames, using an efficient low-rank approximation. By design, specific temporal-spatial-channel configurations are dynamically learned in the tracking process, highlighting the relevant features, and alleviating the performance degrading impact of less discriminative representations and reducing information redundancy. The experimental results obtained on OTB2013, OTB2015, VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its superiority over the state-of-the-art trackers. The code is publicly available at https://github.com/XU-TIANYANG/GFS-DCF

    An Accelerated Correlation Filter Tracker

    Full text link
    Recent visual object tracking methods have witnessed a continuous improvement in the state-of-the-art with the development of efficient discriminative correlation filters (DCF) and robust deep neural network features. Despite the outstanding performance achieved by the above combination, existing advanced trackers suffer from the burden of high computational complexity of the deep feature extraction and online model learning. We propose an accelerated ADMM optimisation method obtained by adding a momentum to the optimisation sequence iterates, and by relaxing the impact of the error between DCF parameters and their norm. The proposed optimisation method is applied to an innovative formulation of the DCF design, which seeks the most discriminative spatially regularised feature channels. A further speed up is achieved by an adaptive initialisation of the filter optimisation process. The significantly increased convergence of the DCF filter is demonstrated by establishing the optimisation process equivalence with a continuous dynamical system for which the convergence properties can readily be derived. The experimental results obtained on several well-known benchmarking datasets demonstrate the efficiency and robustness of the proposed ACFT method, with a tracking accuracy comparable to the start-of-the-art trackers

    LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images

    Full text link
    Deep learning based fusion methods have been achieving promising performance in image fusion tasks. This is attributed to the network architecture that plays a very important role in the fusion process. However, in general, it is hard to specify a good fusion architecture, and consequently, the design of fusion networks is still a black art, rather than science. To address this problem, we formulate the fusion task mathematically, and establish a connection between its optimal solution and the network architecture that can implement it. This approach leads to a novel method proposed in the paper of constructing a lightweight fusion network. It avoids the time-consuming empirical network design by a trial-and-test strategy. In particular we adopt a learnable representation approach to the fusion task, in which the construction of the fusion network architecture is guided by the optimisation algorithm producing the learnable model. The low-rank representation (LRR) objective is the foundation of our learnable model. The matrix multiplications, which are at the heart of the solution are transformed into convolutional operations, and the iterative process of optimisation is replaced by a special feed-forward network. Based on this novel network architecture, an end-to-end lightweight fusion network is constructed to fuse infrared and visible light images. Its successful training is facilitated by a detail-to-semantic information loss function proposed to preserve the image details and to enhance the salient features of the source images. Our experiments show that the proposed fusion network exhibits better fusion performance than the state-of-the-art fusion methods on public datasets. Interestingly, our network requires a fewer training parameters than other existing methods.Comment: 14 pages, 15 figures, 8 table
    • …
    corecore