214 research outputs found

    Coherent manipulation of spin wave vector for polarization of photons in an atomic ensemble

    Full text link
    We experimentally demonstrate the manipulation of two-orthogonal components of a spin wave in an atomic ensemble. Based on Raman two-photon transition and Larmor spin precession induced by magnetic field pulses, the coherent rotations between the two components of the spin wave is controllably achieved. Successively, the two manipulated spin-wave components are mapped into two orthogonal polarized optical emissions, respectively. By measuring Ramsey fringes of the retrieved optical signals, the \pi/2-pulse fidelity of ~96% is obtained. The presented manipulation scheme can be used to build an arbitrary rotation for qubit operations in quantum information processing based on atomic ensembles

    Quantum Interference of Stored Coherent Spin-wave Excitations in a Two-channel Memory

    Full text link
    Quantum memories are essential elements in long-distance quantum networks and quantum computation. Significant advances have been achieved in demonstrating relative long-lived single-channel memory at single-photon level in cold atomic media. However, the qubit memory corresponding to store two-channel spin-wave excitations (SWEs) still faces challenges, including the limitations resulting from Larmor procession, fluctuating ambient magnetic field, and manipulation/measurement of the relative phase between the two channels. Here, we demonstrate a two-channel memory scheme in an ideal tripod atomic system, in which the total readout signal exhibits either constructive or destructive interference when the two-channel SWEs are retrieved by two reading beams with a controllable relative phase. Experimental result indicates quantum coherence between the stored SWEs. Based on such phase-sensitive storage/retrieval scheme, measurements of the relative phase between the two SWEs and Rabi oscillation, as well as elimination of the collapse and revival of the readout signal, are experimentally demonstrated

    WGCNA based identification of hub genes associated with cold response and development in Apis mellifera metamorphic pupae

    Get PDF
    Honeybee is a crucial pollinator in nature, and plays an indispensable role in both agricultural production and scientific research. In recent decades, honeybee was challenged with health problems by biotic and abiotic stresses. As a key ecological factor, temperature has been proved to have an impact on the survival and production efficiency of honeybees. Previous studies have demonstrated that low temperature stress can affect honeybee pupation and shorten adult longevity. However, the molecular mechanism underlying the effects of low temperatures on honeybee growth and development during their developmental period remain poorly understood. In this paper, the weighted gene co-expression analysis (WGCNA) was employed to explore the molecular mechanisms underpinnings of honeybees’ respond to low temperatures (20°C) during four distinct developmental stages: large-larvae, prepupae, early-pupae and mid-pupae. Through an extensive transcriptome analysis, thirteen gene co-expression modules were identified and analyzed in relation to honeybee development and stress responses. The darkorange module was found to be associated with low temperature stress, with its genes primarily involved in autophagy-animal, endocytosis and MAPK signaling pathways. Four hub genes were identified within this module, namely, loc726497, loc409791, loc410923, and loc550857, which may contribute to honeybee resistance to low temperature and provide insight into the underlying mechanism. The gene expression patterns of grey60 and black modules were found to correspond to the developmental stages of prepupae and early-pupae, respectively, with the hub genes loc409494, loc725756, loc552457, loc726158, Ip3k and Lcch3 in grey60 module likely involved in brain development, and the hub genes loc410555 in black module potentially related to exoskeleton development. The brown module genes exhibited a distinct pattern of overexpression in mid-pupae specimens, with genes primarily enriched in oxidative phosphorylation, citrate cycle and other pathways, which may be related to the formation of bee flying muscle. No related gene expression module was found for mature larvae stage. These findings provide valuable insights into the developmental process of honeybees at molecular level during the capped brood stage

    Two-sided jumps risk model with proportional investment and random observation periods

    Get PDF
    In this paper, we consider a two-sided jumps risk model with proportional investments and random observation periods. The downward jumps represent the claim while the upward jumps represent the random returns. Suppose an insurance company invests all of their surplus in risk-free and risky investments in proportion. In real life, corporate boards regularly review their accounts rather than continuously monitoring them. Therefore, we assume that insurers regularly observe surplus levels to determine whether they will ruin and that the random observation periods are exponentially distributed. Our goal is to study the Gerber-Shiu function (i.e., the expected discounted penalty function) of the two-sided jumps risk model under random observation. First, we derive the integral differential equations (IDEs) satisfied by the Gerber-Shiu function. Due to the difficulty in obtaining explicit solutions for the IDEs, we utilize the sinc approximation method to obtain the approximate solution. Second, we analyze the error between the approximate and explicit solutions and find the upper bound of the error. Finally, we discuss examples of sensitivity analysis

    An adaptive energy efficient MAC protocol for RF energy harvesting WBANs

    Get PDF
    Continuous and remote health monitoring medical applications with heterogeneous requirements can be realized through wireless body area networks (WBANs). Energy harvesting is adopted to enable low-power health applications and long-term monitoring without battery replacement, which have drawn significant interest recently. Because energy harvesting WBANs are obviously different from battery-powered ones, network protocols should be designed accordingly to improve network performance. In this article, an efficient cross-layer media access control protocol is proposed for radio frequency powered energy harvesting WBANs. We redesigned the superframe structure, which can be rescheduled by the coordinator dynamically. A time switching (TS) strategy is used when sensors harvest energy from radio frequency signals broadcast by the coordinator, and a transmission power adjustment scheme is proposed for sensors based on the energy harvesting efficiency and the network environment. Energy efficiency can be effectively improved that more packets can be uploaded using limited energy. The length of the energy harvesting period is determined by the coordinator to balance the channel resources and energy requirements of sensors and further improve the network performance. Numerical simulation results show that our protocol can provide superior system performance for long-term periodic health monitoring applications
    • …
    corecore