173 research outputs found
Intracellular Calcium Waves in Bone Cell Networks under Single Cell Nanoindentation
In this study, bone cells were successfully cultured into a micropatterned network with dimensions close to that of in vivo osteocyte networks using microcontact printing and self-assembled monolyers (SAMs). The optimal geometric parameters for the formation of these networks were determined in terms of circle diameters and line widths. Bone cells patterned in these networks were also able to form gap junctions with each other, shown by immunofluorescent staining for the gap junction protein connexin 43, as well as the transfer of gap-junction permeable calcein-AM dye. We have demonstrated for the first time, that the intracellular calcium response of a single bone cell indented in this bone cell network, can be transmitted to neighboring bone cells through multiple calcium waves. Furthermore, the propagation of these calcium waves was diminished with increased cell separation distance. Thus, this study provides new experimental data that support the idea of osteocyte network memory of mechanical loading similar to memory in neural networks
Delivery of small interfering RNA for inhibition of endothelial cell apoptosis by hypoxia and serum deprivation
RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-α (TNF-α). siRNA was designed and synthesized targeting tumor necrosis factor-α receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5 % and SHP-1; 97.2 %) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-α expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-α expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia
Inhibition of HIF-1α Reduced Blood Brain Barrier Damage by Regulating MMP-2 and VEGF During Acute Cerebral Ischemia
Increase of blood brain barrier (BBB) permeability after acute ischemia stroke is a predictor to intracerebral hemorrhage transformation (HT) for tissue plasminogen activator (tPA) thrombolysis and post-endovascular treatment. Previous studies showed that 2-h ischemia induced damage of BBB integrity and matrix metalloproteinase-2 (MMP-2) made major contribution to this disruption. A recent study showed that blocking β2-adrenergic receptor (β2-AR) alleviated ischemia-induced BBB injury by reducing hypoxia-inducible factor-1 alpha (HIF-1α) level. In this study, we sought to investigate the interaction of HIF-1α with MMP-2 and vascular endothelial growth factor (VEGF) in BBB injury after acute ischemia stroke. Rat suture middle cerebral artery occlusion (MCAO) model was used to mimic ischemia condition. Our results showed that ischemia produced BBB damage and MMP-2/9 upregulation was colocalized with Rhodamine-dextran leakage. Pretreatment with YC-1, a HIF-1α inhibitor, alleviated 2-h ischemia-induced BBB injury significantly accompanied by decrease of MMP-2 upregulation. In addition, YC-1 also prevented VEGF-induced BBB damage. Of note, VEGF was shown to be colocalized with neurons but not astrocytes. Taken together, BBB damage was reduced by inhibition of interaction of HIF-1α with MMP-2 and VEGF during acute cerebral ischemia. These findings provide mechanisms underlying BBB damage after acute ischemia stroke and may help reduce thrombolysis- and post-endovascular treatment-related cerebral hemorrhage
Xuebijing injection reduces organ injuries and improves survival by attenuating inflammatory responses and endothelial injury in heatstroke mice
Nanostructured substrate fabricated by sectioning tendon using a microtome for tissue engineering
2S04 Decellularized tissue extracellular matrices : a potential source of biomaterials for tissue engineering
- …
