91 research outputs found
Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding
Automatic parsing of human anatomies at instance-level from 3D computed
tomography (CT) scans is a prerequisite step for many clinical applications.
The presence of pathologies, broken structures or limited field-of-view (FOV)
all can make anatomy parsing algorithms vulnerable. In this work, we explore
how to exploit and conduct the prosperous detection-then-segmentation paradigm
in 3D medical data, and propose a steerable, robust, and efficient computing
framework for detection, identification, and segmentation of anatomies in CT
scans. Considering complicated shapes, sizes and orientations of anatomies,
without lose of generality, we present the nine degrees-of-freedom (9-DoF) pose
estimation solution in full 3D space using a novel single-stage,
non-hierarchical forward representation. Our whole framework is executed in a
steerable manner where any anatomy of interest can be directly retrieved to
further boost the inference efficiency. We have validated the proposed method
on three medical imaging parsing tasks of ribs, spine, and abdominal organs.
For rib parsing, CT scans have been annotated at the rib instance-level for
quantitative evaluation, similarly for spine vertebrae and abdominal organs.
Extensive experiments on 9-DoF box detection and rib instance segmentation
demonstrate the effectiveness of our framework (with the identification rate of
97.0% and the segmentation Dice score of 90.9%) in high efficiency, compared
favorably against several strong baselines (e.g., CenterNet, FCOS, and
nnU-Net). For spine identification and segmentation, our method achieves a new
state-of-the-art result on the public CTSpine1K dataset. Last, we report highly
competitive results in multi-organ segmentation at FLARE22 competition. Our
annotations, code and models will be made publicly available at:
https://github.com/alibaba-damo-academy/Med_Query.Comment: updated versio
A New Probabilistic V-Net Model with Hierarchical Spatial Feature Transform for Efficient Abdominal Multi-Organ Segmentation
Accurate and robust abdominal multi-organ segmentation from CT imaging of
different modalities is a challenging task due to complex inter- and
intra-organ shape and appearance variations among abdominal organs. In this
paper, we propose a probabilistic multi-organ segmentation network with
hierarchical spatial-wise feature modulation to capture flexible organ semantic
variants and inject the learnt variants into different scales of feature maps
for guiding segmentation. More specifically, we design an input decomposition
module via a conditional variational auto-encoder to learn organ-specific
distributions on the low dimensional latent space and model richer organ
semantic variations that is conditioned on input images.Then by integrating
these learned variations into the V-Net decoder hierarchically via spatial
feature transformation, which has the ability to convert the variations into
conditional Affine transformation parameters for spatial-wise feature maps
modulating and guiding the fine-scale segmentation. The proposed method is
trained on the publicly available AbdomenCT-1K dataset and evaluated on two
other open datasets, i.e., 100 challenging/pathological testing patient cases
from AbdomenCT-1K fully-supervised abdominal organ segmentation benchmark and
90 cases from TCIA+&BTCV dataset. Highly competitive or superior quantitative
segmentation results have been achieved using these datasets for four abdominal
organs of liver, kidney, spleen and pancreas with reported Dice scores improved
by 7.3% for kidneys and 9.7% for pancreas, while being ~7 times faster than two
strong baseline segmentation methods(nnUNet and CoTr).Comment: 12 pages, 6 figure
Anatomical Invariance Modeling and Semantic Alignment for Self-supervised Learning in 3D Medical Image Analysis
Self-supervised learning (SSL) has recently achieved promising performance
for 3D medical image analysis tasks. Most current methods follow existing SSL
paradigm originally designed for photographic or natural images, which cannot
explicitly and thoroughly exploit the intrinsic similar anatomical structures
across varying medical images. This may in fact degrade the quality of learned
deep representations by maximizing the similarity among features containing
spatial misalignment information and different anatomical semantics. In this
work, we propose a new self-supervised learning framework, namely Alice, that
explicitly fulfills Anatomical invariance modeling and semantic alignment via
elaborately combining discriminative and generative objectives. Alice
introduces a new contrastive learning strategy which encourages the similarity
between views that are diversely mined but with consistent high-level
semantics, in order to learn invariant anatomical features. Moreover, we design
a conditional anatomical feature alignment module to complement corrupted
embeddings with globally matched semantics and inter-patch topology
information, conditioned by the distribution of local image content, which
permits to create better contrastive pairs. Our extensive quantitative
experiments on three 3D medical image analysis tasks demonstrate and validate
the performance superiority of Alice, surpassing the previous best SSL
counterpart methods and showing promising ability for united representation
learning. Codes are available at https://github.com/alibaba-damo-academy/alice.Comment: This paper has been accepted by ICCV 2023 (oral
Anatomy-Aware Lymph Node Detection in Chest CT using Implicit Station Stratification
Finding abnormal lymph nodes in radiological images is highly important for
various medical tasks such as cancer metastasis staging and radiotherapy
planning. Lymph nodes (LNs) are small glands scattered throughout the body.
They are grouped or defined to various LN stations according to their
anatomical locations. The CT imaging appearance and context of LNs in different
stations vary significantly, posing challenges for automated detection,
especially for pathological LNs. Motivated by this observation, we propose a
novel end-to-end framework to improve LN detection performance by leveraging
their station information. We design a multi-head detector and make each head
focus on differentiating the LN and non-LN structures of certain stations.
Pseudo station labels are generated by an LN station classifier as a form of
multi-task learning during training, so we do not need another explicit LN
station prediction model during inference. Our algorithm is evaluated on 82
patients with lung cancer and 91 patients with esophageal cancer. The proposed
implicit station stratification method improves the detection sensitivity of
thoracic lymph nodes from 65.1% to 71.4% and from 80.3% to 85.5% at 2 false
positives per patient on the two datasets, respectively, which significantly
outperforms various existing state-of-the-art baseline techniques such as
nnUNet, nnDetection and LENS
Quantivine: A Visualization Approach for Large-scale Quantum Circuit Representation and Analysis
Quantum computing is a rapidly evolving field that enables exponential
speed-up over classical algorithms. At the heart of this revolutionary
technology are quantum circuits, which serve as vital tools for implementing,
analyzing, and optimizing quantum algorithms. Recent advancements in quantum
computing and the increasing capability of quantum devices have led to the
development of more complex quantum circuits. However, traditional quantum
circuit diagrams suffer from scalability and readability issues, which limit
the efficiency of analysis and optimization processes. In this research, we
propose a novel visualization approach for large-scale quantum circuits by
adopting semantic analysis to facilitate the comprehension of quantum circuits.
We first exploit meta-data and semantic information extracted from the
underlying code of quantum circuits to create component segmentations and
pattern abstractions, allowing for easier wrangling of massive circuit
diagrams. We then develop Quantivine, an interactive system for exploring and
understanding quantum circuits. A series of novel circuit visualizations are
designed to uncover contextual details such as qubit provenance, parallelism,
and entanglement. The effectiveness of Quantivine is demonstrated through two
usage scenarios of quantum circuits with up to 100 qubits and a formal user
evaluation with quantum experts. A free copy of this paper and all supplemental
materials are available at
https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9.Comment: Accepted by IEEE VIS 202
Parse and Recall: Towards Accurate Lung Nodule Malignancy Prediction like Radiologists
Lung cancer is a leading cause of death worldwide and early screening is
critical for improving survival outcomes. In clinical practice, the contextual
structure of nodules and the accumulated experience of radiologists are the two
core elements related to the accuracy of identification of benign and malignant
nodules. Contextual information provides comprehensive information about
nodules such as location, shape, and peripheral vessels, and experienced
radiologists can search for clues from previous cases as a reference to enrich
the basis of decision-making. In this paper, we propose a radiologist-inspired
method to simulate the diagnostic process of radiologists, which is composed of
context parsing and prototype recalling modules. The context parsing module
first segments the context structure of nodules and then aggregates contextual
information for a more comprehensive understanding of the nodule. The prototype
recalling module utilizes prototype-based learning to condense previously
learned cases as prototypes for comparative analysis, which is updated online
in a momentum way during training. Building on the two modules, our method
leverages both the intrinsic characteristics of the nodules and the external
knowledge accumulated from other nodules to achieve a sound diagnosis. To meet
the needs of both low-dose and noncontrast screening, we collect a large-scale
dataset of 12,852 and 4,029 nodules from low-dose and noncontrast CTs
respectively, each with pathology- or follow-up-confirmed labels. Experiments
on several datasets demonstrate that our method achieves advanced screening
performance on both low-dose and noncontrast scenarios.Comment: MICCAI 202
Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans
Deep learning empowers the mainstream medical image segmentation methods.
Nevertheless current deep segmentation approaches are not capable of
efficiently and effectively adapting and updating the trained models when new
incremental segmentation classes (along with new training datasets or not) are
required to be added. In real clinical environment, it can be preferred that
segmentation models could be dynamically extended to segment new organs/tumors
without the (re-)access to previous training datasets due to obstacles of
patient privacy and data storage. This process can be viewed as a continual
semantic segmentation (CSS) problem, being understudied for multi-organ
segmentation. In this work, we propose a new architectural CSS learning
framework to learn a single deep segmentation model for segmenting a total of
143 whole-body organs. Using the encoder/decoder network structure, we
demonstrate that a continually-trained then frozen encoder coupled with
incrementally-added decoders can extract and preserve sufficiently
representative image features for new classes to be subsequently and validly
segmented. To maintain a single network model complexity, we trim each decoder
progressively using neural architecture search and teacher-student based
knowledge distillation. To incorporate with both healthy and pathological
organs appearing in different datasets, a novel anomaly-aware and confidence
learning module is proposed to merge the overlapped organ predictions,
originated from different decoders. Trained and validated on 3D CT scans of
2500+ patients from four datasets, our single network can segment total 143
whole-body organs with very high accuracy, closely reaching the upper bound
performance level by training four separate segmentation models (i.e., one
model per dataset/task)
- …