856 research outputs found

    Boundary integral equation methods for the elastic and thermoelastic waves in three dimensions

    Get PDF
    In this paper, we consider the boundary integral equation (BIE) method for solving the exterior Neumann boundary value problems of elastic and thermoelastic waves in three dimensions based on the Fredholm integral equations of the first kind. The innovative contribution of this work lies in the proposal of the new regularized formulations for the hyper-singular boundary integral operators (BIO) associated with the time-harmonic elastic and thermoelastic wave equations. With the help of the new regularized formulations, we only need to compute the integrals with weak singularities at most in the corresponding variational forms of the boundary integral equations. The accuracy of the regularized formulations is demonstrated through numerical examples using the Galerkin boundary element method (BEM).Comment: 24 pages, 6 figure

    A spectral projection method for transmission eigenvalues

    Full text link
    In this paper, we consider a nonlinear integral eigenvalue problem, which is a reformulation of the transmission eigenvalue problem arising in the inverse scattering theory. The boundary element method is employed for discretization, which leads to a generalized matrix eigenvalue problem. We propose a novel method based on the spectral projection. The method probes a given region on the complex plane using contour integrals and decides if the region contains eigenvalue(s) or not. It is particularly suitable to test if zero is an eigenvalue of the generalized eigenvalue problem, which in turn implies that the associated wavenumber is a transmission eigenvalue. Effectiveness and efficiency of the new method are demonstrated by numerical examples.Comment: The paper has been accepted for publication in SCIENCE CHINA Mathematic
    • …
    corecore