46 research outputs found

    Oral small-molecule tyrosine kinase 2 and phosphodiesterase 4 inhibitors in plaque psoriasis: a network meta-analysis

    Get PDF
    BackgroundOrally administered small-molecule drugs including tyrosine kinase 2 (TYK2) inhibitors and phosphodiesterase 4 (PDE4) inhibitors are new candidates for systemic therapy in plaque psoriasis. However, no previous articles evaluated the benefit and risk profile of TYK2 and PDE4 inhibitors in psoriasis.ObjectivesThe objective of this study was to compare the efficacy and safety of oral small-molecule drugs, including TYK2 and PDE4 inhibitors, in treating moderate-to-severe plaque psoriasis.MethodsPubMed, Embase, and Cochrane library were searched for eligible randomized clinical trials (RCTs). Response rates for a 75% reduction from baseline in Psoriasis Area and Severity Index (PASI-75) and Physician’s Global Assessment score of 0 or 1 (PGA 0/1) were used for efficacy assessment. Safety was evaluated with the incidence of adverse events (AEs). A Bayesian multiple treatment network meta-analysis (NMA) was performed.ResultsIn total, 13 RCTs (five for TYK2 inhibitors and eight for PDE4 inhibitors) involving 5274 patients were included. The study found that deucravacitinib at any dose (except for 3 mg QOD), ropsacitinib (200 and 400 mg QD), and apremilast (20 and 30 mg BID) had higher PASI and PGA response rates than placebo. In addition, deucravacitinib (3 mg BID, 6 mg QD, 6 mg BID, and 12 mg QD), and ropsacitinib (400 mg QD) showed superior efficacy than apremilast (30 mg BID). In terms of safety, deucravacitinib or ropsacitinib at any dose did not lead to a higher incidence of AEs than apremilast (30 mg BID). The ranking analysis of efficacy revealed that deucravacitinib 12 mg QD and deucravacitinib 3 mg BID had the highest chance of being the most effective oral treatment, followed by deucravacitinib 6 mg BID and ropsacitinib 400 mg QD.ConclusionsOral TYK2 inhibitors demonstrated satisfactory performance in treating psoriasis, surpassing apremilast at certain doses. More large-scale, long-term studies focusing on novel TYK2 inhibitors are needed.Systematic review registrationPROSPERO (ID: CRD42022384859), available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022384859, identifier CRD42022384859

    PND-Net: Physics based Non-local Dual-domain Network for Metal Artifact Reduction

    Full text link
    Metal artifacts caused by the presence of metallic implants tremendously degrade the reconstructed computed tomography (CT) image quality, affecting clinical diagnosis or reducing the accuracy of organ delineation and dose calculation in radiotherapy. Recently, deep learning methods in sinogram and image domains have been rapidly applied on metal artifact reduction (MAR) task. The supervised dual-domain methods perform well on synthesized data, while unsupervised methods with unpaired data are more generalized on clinical data. However, most existing methods intend to restore the corrupted sinogram within metal trace, which essentially remove beam hardening artifacts but ignore other components of metal artifacts, such as scatter, non-linear partial volume effect and noise. In this paper, we mathematically derive a physical property of metal artifacts which is verified via Monte Carlo (MC) simulation and propose a novel physics based non-local dual-domain network (PND-Net) for MAR in CT imaging. Specifically, we design a novel non-local sinogram decomposition network (NSD-Net) to acquire the weighted artifact component, and an image restoration network (IR-Net) is proposed to reduce the residual and secondary artifacts in the image domain. To facilitate the generalization and robustness of our method on clinical CT images, we employ a trainable fusion network (F-Net) in the artifact synthesis path to achieve unpaired learning. Furthermore, we design an internal consistency loss to ensure the integrity of anatomical structures in the image domain, and introduce the linear interpolation sinogram as prior knowledge to guide sinogram decomposition. Extensive experiments on simulation and clinical data demonstrate that our method outperforms the state-of-the-art MAR methods.Comment: 19 pages, 8 figure

    Iterative Image Reconstruction for Limited-Angle CT Using Optimized Initial Image

    Get PDF
    Limited-angle computed tomography (CT) has great impact in some clinical applications. Existing iterative reconstruction algorithms could not reconstruct high-quality images, leading to severe artifacts nearby edges. Optimal selection of initial image would influence the iterative reconstruction performance but has not been studied deeply yet. In this work, we proposed to generate optimized initial image followed by total variation (TV) based iterative reconstruction considering the feature of image symmetry. The simulated data and real data reconstruction results indicate that the proposed method effectively removes the artifacts nearby edges

    Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation

    Get PDF
    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstruction within 30 seconds.Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC noise from the simulated scatter images caused by low photon numbers. The method is validated on one simulated head-and-neck case with 364 projection angles.Results: We have examined variation of the scatter signal among projection angles using Fourier analysis. It is found that scatter images at 31 angles are sufficient to restore those at all angles with < 0.1% error. For the simulated patient case with a resolution of 512 × 512 × 100, we simulated 5 × 106 photons per angle. The total computation time is 20.52 seconds on a Nvidia GTX Titan GPU, and the time at each step is 2.53, 0.64, 14.78, 0.13, 0.19, and 2.25 seconds, respectively. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU.Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. It accomplished the whole procedure of scatter correction and reconstruction within 30 seconds.----------------------------Cite this article as: Xu Y, Bai T, Yan H, Ouyang L, Wang J, Pompos A, Zhou L, Jiang SB, Jia X. Ultrafast cone-beam CT scatter correction with GPU-based Monte Carlo simulation. Int J Cancer Ther Oncol 2014; 2(2):020245. DOI: 10.14319/ijcto.0202.4

    Post-procedural and long-term functional outcomes of jailed side branches in stented coronary bifurcation lesions assessed with side branch Murray law–based quantitative flow ratio

    Get PDF
    IntroductionIn coronary bifurcation lesions treated with percutaneous coronary intervention (PCI) using a 1-stent strategy, the occurrence of side branch (SB) compromise may lead to long-term myocardial ischemia in the SB territory. Murray law–based quantitative flow ratio (ÎŒQFR) is a novel angiography-based approach estimating fractional flow reserve from a single angiographic view, and thus is more feasible to assess SB compromise in routine practice. However, its association with long-term SB coronary blood flow remains unknown.MethodsA total of 146 patients with 313 non-left main bifurcation lesions receiving 1-stent strategy with drug-eluting stents was included in this retrospective study. These lesions had post-procedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3 in SBs, and documented angiographic images of index procedure and 6- to 24-month angiographic follow-up. Post-procedural SB ÎŒQFR was calculated. Long-term SB coronary blood flow was quantified with the TIMI grading system using angiograms acquired at angiographic follow-up.ResultsAt follow-up, 8 (2.6%), 16 (5.1%), 61 (19.5%), and 228 (72.8%) SBs had a TIMI flow grade of 0, 1, 2, and 3, respectively. The incidences of long-term SB TIMI flow grade ≀1 and ≀2 both tended to decrease across the tertiles of post-procedural SB ÎŒQFR. The receiver operating characteristic curve analyses indicated the post-procedural SB ÎŒQFR ≀0.77 was the optimal cut-off value to identify long-term SB TIMI flow grade ≀1 (specificity, 37.50%; sensitivity, 87.20%; area under the curve, 0.6673; P = 0.0064), and it was independently associated with 2.57-fold increased risk (adjusted OR, 2.57; 95% CI, 1.02–7.25; P = 0.045) in long-term SB TIMI flow grade ≀1 after adjustment.DiscussionPost-procedural SB ÎŒQFR was independently associated with increased risk in impaired SB TIMI flow at long-term follow-up. Further investigations should focus on whether PCI optimization based on ÎŒQFR may contribute to improve SB flow in the long term

    Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure

    Get PDF
    Abstract: OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a blaOXA−23‐containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub‐inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of blaOXA−23 in pAZJ221, interfering allele dynamics, and chromosomal locus‐level parallelism were observed. To characterize genotype‐to‐phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3â€Č → 5â€Č) GMP‐metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of blaOXA−23 was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of blaOXA−23 increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic‐free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co‐evolution of A. baumannii and a clinical blaOXA−23‐containing plasmid in the presence of imipenem, involving early blaOXA−23 duplication followed by chromosomal adaptations that improved the fitness of plasmid‐carrying cells

    Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    Get PDF
    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants

    Short-term risk and long-term incidence rate of infection and malignancy with IL-17 and IL-23 inhibitors in adult patients with psoriasis and psoriatic arthritis: a systematic review and meta-analysis

    No full text
    The risk of infection and malignancy may be a concern for patients with psoriasis receiving interleukin (IL)-17 and IL-23 inhibitors, particularly with long-term treatments. We aimed to estimate the short-term risks and long-term incidence rates of infection and malignancy with IL-17 or IL-23 antagonists in adult patients with psoriasis and psoriatic arthritis through this comprehensive meta-analysis (PROSPERO registration number: CRD42022363127). We searched PubMed, MEDLINE, Web of Science and ClinicalTrials.gov until May 17, 2023 for randomized placebo-controlled trials and long-term (≄ 52 weeks) open-label extension studies. The estimates of short-term risk ratios (RRs) and long-term exposure-adjusted incidence rates (EAIRs) were pooled using R software 4.1.1 and STATA 16.0. This review included 45 randomized placebo-controlled studies and 27 open-label extension studies. Short-term RRs of serious infection, overall infection and malignancy were 1.45 (95% confidence intervals, 95% CI: 0.81-2.59), 1.20 (95% CI: 1.06-1.35), 0.83 (95% CI: 0.41-1.71) with IL-17 inhibitors; and 0.68 (95% CI: 0.38-1.22), 1.13 (95% CI: 1.00-1.28), 0.87 (95% CI: 0.37-2.04) with IL-23 inhibitors. Increased short-term risks of nasopharyngitis and Candida infection with IL-17 inhibitors were found. Long-term EAIRs of serious infection, overall infection, nonmelanoma skin cancer (NMSC), malignancies excluding NMSC, nasopharyngitis and upper respiratory tract infection were 1.11/100 patient-years (PYs), 57.78/100PYs, 0.47/100PYs, 0.24/100PYs, 15.07/100PYs, 8.52/100PYs, 3.41/100PYs with IL-17 inhibitors; and 1.09/100PYs, 48.50/100PYs, 0.40/100PYs, 0.43/100PYs, 10.75/100PYs, 5.84/100PYs with IL-23 inhibitors. Long-term EAIR of Candida infection was 3.41/100PYs with IL-17 inhibitors. No active or reactivated tuberculosis was ever reported in all the trials, and only a few cases of latent tuberculosis, hepatitis, and herpes zoster were reported during the long-term extension periods. No evidence of increased EAIRs of infection and malignancy with longer durations was found. Our study suggested that short-term risk and long-term incidence of infections and malignancies in psoriasis patients receiving IL-17 inhibitors and IL-23 inhibitors are generally low. However, close monitoring is required for nasopharyngitis and Candida infection with IL-17 inhibitors.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022363127
    corecore