345 research outputs found

    Diffusive Pseudo-Conformal Mapping: Anisotropy-Free Transformation Thermal Media with Perfect Interface Matching

    Full text link
    Transformation media provide a fundamental paradigm for field regulation, but their tricky anisotropy challenges fabrication. Though optical conformal mapping has been utilized to eliminate anisotropy, two key factors still hinder its development in thermotics, i.e., the distinct diffusion nature and inevitable interface mismatching. Here, we put forth the concept of diffusive pseudo-conformal mapping, overcoming the inherent difference between diffusion and waves and achieving perfect interface matching. The proposed mapping directly leads to heat guiding and expanding functions with anisotropy-free transformation thermal media, whose feasibility is confirmed by experiments or simulations. Besides diverse applications, we provide a unified perspective for two distinct types of prevailing bilayer cloaks by uncovering their profound ties with pseudo-conformal mapping. These results greatly simplify the preparation of transformation thermotics and have implications for regulating other diffusion and wave phenomena

    Experimental study on fracture plugging effect of irregular-shaped lost circulation materials

    Get PDF
    Using micro-visualization experimental device for the formation of fracture plugging zone, the plugging behavior of irregular-shaped lost circulation materials (LCMs) with different types and concentrations in fractures was experimentally analyzed. The results show that the sealing time decreases significantly with the increase of material concentration. When the concentration is 20%, the sealing times of materials LCM-1∼LCM-5 are 6s, 7s, 5s, 6s, 4s, respectively. The formation of fracture plugging zone includes two stages, and the main factors affecting the formation of fracture plugging zone are flatness, roundness, convexity and concentrations. Flatness affects the retention stage of LCMs through the matching degree between particle size and fracture width. Convexity and roundness affect the retention stage by increasing the friction coefficient between particles. The high-efficiency retention ability of irregular LCMs is characterized by strong matching to fracture width, and strong friction and sliding resistance between particles. It is recommended that the optimized geometric parameters of high-efficiency retention materials should meet the requirements of “low flatness, low roundness and low convexity” (flatness \u3c0.6, roundness \u3c0.6 and convexity \u3c0.8), which can improve the plugging effect significantly

    Reconfigurable Three-Dimensional Thermal Dome

    Full text link
    Thermal metamaterial represents a groundbreaking approach to control heat conduction, and, as a crucial component, thermal invisibility is of utmost importance for heat management. Despite the flourishing development of thermal invisibility schemes, they still face two limitations in practical applications. First, objects are typically completely enclosed in traditional cloaks, making them difficult to use and unsuitable for objects with heat sources. Second, although some theoretical proposals have been put forth to change the thermal conductivity of materials to achieve dynamic invisibility, their designs are complex and rigid, making them unsuitable for large-scale use in real three-dimensional spaces. Here, we propose a concept of a thermal dome to achieve three-dimensional invisibility. Our scheme includes an open functional area, greatly enhancing its usability and applicability. It features a reconfigurable structure, constructed with simple isotropic natural materials, making it suitable for dynamic requirements. The performance of our reconfigurable thermal dome has been confirmed through simulations and experiments, consistent with the theory. The introduction of this concept can greatly advance the development of thermal invisibility technology from theory to engineering and provide inspiration for other physical domains, such as direct current electric fields and magnetic fields

    Multi-influence factor prediction for water bloom based on multi-sensor system

    Get PDF
    This paper proposes a new multi-influence factors prediction method for water bloom prediction based on a remote monitor system and multi-sensor data taking into account the integrated effect of multiple influential factors along with the periodicity and random effect of environmental variables. Valid and accurate water-bloom prediction can be obtained by combining various multidimensional time series methods. Comparing the proposed model based on multi-sensors data to a traditional one-dimensional time series model based on one-sensor data, it has been found that a multidimensional model is a useful and accurate model for establishing multiple influential factors time series of water bloom. The optimum model can be used not only to predict water bloom but also to determine the period and random change rule of multiple influential factors

    Concentrations and gas-particle partitioning of PCDD/Fs in the urban air of Dalian, China

    Get PDF
    PCDD/Fs in the urban air of Dalian, China were monitored with high-volume active sampler from November 2009 to October 2010. The concentration of Cl4-8DD/Fs ranged from 3065 to 49538 fg m(-3), with an average of 10249 fg m(-3). The international toxic equivalents (I-TEQ) value of that was 61.8-1182 fg m(-3), with an average of 235 fg m(-3), which was comparable to those in the other urban locations around the world. It was found that the Cl4-8DD/Fs appeared to be present mainly in the particle phase during winter, spring and autumn, while during summer which were dominantly in gas phase. The ratio of Cl4-8DD/Fs present in particle phase increased with the increasing level of chlorination. The concentrations of PCDFs and PCDDs decreased with the increase of chlorinated level, while the concentrations of 2,3,7,8-PCDDs congeners increased with the increase of chlorination level. The homolog profiles of the concentrations of PCDFs presented were higher than those of the PCDDs, which indicated the PCDD/Fs pollution source of the air in Dalian was characteristic for thermal source pollution. The correlation analysis of meteorological parameters with the concentrations of Cl4-8CDD/Fs was conducted using SPSS packages, and it was found that the ambient temperature and atmospheric pressure were important factors influence the concentration of PCDD/Fs in the air. The respiratory risk and intake dioxins of the residents around the sampling sites were studied in the paper. It was found that Junge-Pankow model was much more accurate in predicting the gas-particle partitioning behavior of PCDD/Fs homologues during winter, while the Harner-Bidleman model shows better agreement with the measured data during winter and summer
    corecore