63 research outputs found

    An Ideal Compartmented Secret Sharing Scheme Based on Linear Homogeneous Recurrence Relations

    Get PDF
    Multipartite secret sharing schemes are those that have multipartite access structures. The set of the participants in those schemes is divided into several parts, and all the participants in the same part play the equivalent role. One type of such access structure is the compartmented access structure. We propose an ideal and efficient compartmented multi-secret sharing scheme based on the linear homogeneous recurrence (LHR) relations. In the construction phase, the shared secrets are hidden in some terms of the linear homogeneous recurrence sequence. In the recovery phase, the shared secrets are obtained by solving those terms in which the shared secrets are hidden. When the global threshold is tt, our scheme can reduce the computational complexity from O(nt1)O(n^{t-1}) to O(nmax(ti1)logn)O(n^{\max(t_i-1)}\log n), where ti<tt_i<t. The security of the proposed scheme is based on Shamir\u27s threshold scheme. Moreover, it is efficient to share the multi-secret and to change the shared secrets in the proposed scheme. That is, the proposed scheme can improve the performances of the key management and the distributed system

    Digger: Detecting Copyright Content Mis-usage in Large Language Model Training

    Full text link
    Pre-training, which utilizes extensive and varied datasets, is a critical factor in the success of Large Language Models (LLMs) across numerous applications. However, the detailed makeup of these datasets is often not disclosed, leading to concerns about data security and potential misuse. This is particularly relevant when copyrighted material, still under legal protection, is used inappropriately, either intentionally or unintentionally, infringing on the rights of the authors. In this paper, we introduce a detailed framework designed to detect and assess the presence of content from potentially copyrighted books within the training datasets of LLMs. This framework also provides a confidence estimation for the likelihood of each content sample's inclusion. To validate our approach, we conduct a series of simulated experiments, the results of which affirm the framework's effectiveness in identifying and addressing instances of content misuse in LLM training processes. Furthermore, we investigate the presence of recognizable quotes from famous literary works within these datasets. The outcomes of our study have significant implications for ensuring the ethical use of copyrighted materials in the development of LLMs, highlighting the need for more transparent and responsible data management practices in this field

    Linear Regression Side Channel Attack Applied on Constant XOR

    Get PDF
    Linear regression side channel attack (LRA) used to be known as a robust attacking method as it makes use of independent bits leakage. This leakage assumption is more general than Hamming weight/ Hamming distance model used in correlation power attack (CPA). However, in practice, Hamming weight and Hamming distance model suit most devices well. In this paper, we restudy linear regression attack under Hamming weight/ Hamming distance model and propose our novel LRA methods. We find that in many common scenarios LRA is not only an alternative but also a more efficient tool compared with CPA. Two typical cases are recovering keys with XOR operation leakage and chosen plaintext attack on block ciphers with leakages from round output. Simulation results are given to compare with traditional CPA in both cases. Our LRA method achieves up to 400% and 300% improvements for corresponding case compared with CPA respectively. Experiments with AES on SAKURA-G board also prove the efficiency of our methods in practice where 128 key bits are recovered with 1500 traces using XOR operation leakage and one key byte is recovered with only 50 chosen-plaintext traces in the other case
    corecore