95 research outputs found

    Highly sensitive magnetic properties and large linear magnetoresistance in antiferromagnetic CrxSe(0.875\lex\le1)single crystals

    Full text link
    CrxSe (x\le1) is a class of quasi-layered binary compounds with potential applications in spintronics due to its intriguing antiferromagnetic properties. In this work, CrxSe single crystals with high Cr content (x=0.87, 0.91 and 0.95) were grown, and their magnetic and transport properties were investigated in detail. It is found that with small increase of Cr content, the N\'eel temperature (TN) of the samples can dramatically increase from 147 K to 257 K, accompanied with obvious changes in the magnetic anisotropy and hysteresis. The phenomena of field-induced spin-flop transitions were unveiled in these alloys, indicating their comparatively low anisotropy. The magnetoresistance (MR) of the three compounds showed positive dependence at low temperatures and particularly, non-saturated linear positive MR was observed in Cr0.91Se and Cr0.95Se, with a large value of 16.2% achieved in Cr0.91Se (10K, 9T). The calculated Fermi surface and MR showed that the quasi-linear MR is a product of carrier compensation. Our work revealed highly sensitive magnetic and transport properties in the Cr-Se compounds, which can lay foundation when constructing further antiferromagnetic spintronic devices based on them

    Growth of high-quality CrI3 single crystals and engineering of its magnetic properties via V and Mn doping

    Full text link
    CrI3, as a soft van der Waals layered magnetic material, has been widely concerned and explored for its magnetic complexity and tunability. In this work, high quality and large size thin CrI3, V and Mn doped single crystals were prepared by chemical vapor transfer method. A remarkable irreversible Barkhausen effect was observed in CrI3 and CrMn0.06I3, which can be attributed to the low dislocation density that facilitates movement of the domain walls. In addition, the introduction of the doping element Mn allows higher saturation magnetization intensity. Cr0.5V0.5I3 exhibits substantially increased coercivity force and larger magnetocrystalline anisotropy compared to CrI3, while kept similar Curie temperature and good environmental stability. The first principles calculations suggest direct and narrowed band gaps in Cr0.5V0.5I3 and VI3 comparing to CrI3. The smaller band gaps and good hard magnetic property make Cr0.5V0.5I3 an alternative choice to future research of spintronic devices

    Vanishing of the anomalous Hall effect and enhanced carrier mobility in the spin-gapless ferromagnetic Mn2CoGa1-xAlx alloys

    Full text link
    Spin gapless semiconductor (SGS) has attracted long attention since its theoretical prediction, while concrete experimental hints are still lack in the relevant Heusler alloys. Here in this work, by preparing the series alloys of Mn2CoGa1-xAlx (x=0, 0.25, 0.5, 0.75 and 1), we identified the vanishing of anomalous Hall effect in the ferromagnetic Mn2CoGa (or x=0.25) alloy in a wide temperature interval, accompanying with growing contribution from the ordinary Hall effect. As a result, comparatively low carrier density (1020 cm-3) and high carrier mobility (150 cm2/Vs) are obtained in Mn2CoGa (or x=0.25) alloy in the temperature range of 10-200K. These also lead to a large dip in the related magnetoresistance at low fields. While in high Al content, despite the magnetization behavior is not altered significantly, the Hall resistivity is instead dominated by the anomalous one, just analogous to that widely reported in Mn2CoAl. The distinct electrical transport behavior of x=0 and x=0.75 (or 1) is presently understood by their possible different scattering mechanism of the anomalous Hall effect due to the differences in atomic order and conductivity. Our work can expand the existing understanding of the SGS properties and offer a better SGS candidate with higher carrier mobility that can facilitate the application in the spin-injected related devices
    • …
    corecore