100 research outputs found

    Tuning Co valence state in cobalt oxyhydrate superconductor by post reduction

    Full text link
    We report a successful tuning of Co valence state in cobalt oxyhydrate superconductor via a facile post reduction using NaOH as reducing agent. The change in Co valence was precisely determined by measuring the volume of the released oxygen. The possible hydronium-incorporation was greatly suppressed in concentrated NaOH solution, making the absolute Co valence determinable. As a result, an updated superconducting phase diagram was obtained, which shows that the superconducting transition temperature increases monotonically with increasing Co valence in a narrow range from +3.58 to +3.65.Comment: 17 pages, 5 figures and 1 table. Chem. Mat. in pres

    Blind channel identification based on second-order statistics: a frequency-domain approach

    Get PDF
    In this communication, necessary and sufficient conditions are presented for the unique blind identification of possibly nonminimum phase channels driven by cyclostationary processes. Using a frequency domain formulation, it is first shown that a channel can be identified by the second-order statistics of the observation if and only if the channel transfer function does not have special uniformly spaced zeros. This condition leads to several necessary and sufficient conditions on the observation spectra and the channel impulse response. Based on the frequency-domain formulation, a new identification algorithm is proposed

    Superconductivity and local-moment magnetism in Eu(Fe0.89_{0.89}Co0.11_{0.11})2_{2}As2_{2}

    Get PDF
    We report the measurements of resistivity and magnetization under magnetic fields parallel and perpendicular to the basal plane, respectively, on a cobalt-doped Eu(Fe0.89_{0.89}Co0.11_{0.11})2_{2}As2_{2} single crystal. We observed a resistivity drop at TcT_c\sim 21 K, which shifts toward lower temperatures under external fields, suggesting a superconducting transition. The upper critical fields near TcT_c show large anisotropy, in contrast with those of other '122' FeAs-based superconductors. Low-field magnetic susceptibility data also show evidence of superconductivity below 21 K. Instead of expected zero-resistance below TcT_c, however, a resistivity reentrance appears at 17 K under zero field, coincident with the magnetic ordering of Eu2+^{2+} moments. Based on the temperature and field dependences of anisotropic magnetization, a helical magnetic structure for the Eu2+^{2+} spins is proposed. External magnetic fields easily changes the helimagnetism into a ferromagnetism with fully polarized Eu2+^{2+} spins, accompanying by disappearance of the resistivity reentrance. Therefore, superconductivity coexists with ferromagnetic state of Eu2+^{2+} spins under relatively low magnetic field. The magnetic and superconducting phase diagrams are finally summarized for both HabH\parallel ab and HcH\parallel c.Comment: 8 pages, 10 figure

    Enhanced thermopower in an intergrowth cobalt oxide Li0.48_{0.48}Na0.35_{0.35}CoO2_{2}

    Full text link
    We report the measurements of thermopower, electrical resistivity and thermal conductivity in a complex cobalt oxide Li0.48_{0.48}Na0.35_{0.35}CoO2_{2}, whose crystal structure can be viewed as an intergrowth of the O3 phase of Lix_{x}CoO2_{2} and the P2 phase of Nay_{y}CoO2_{2} along the c axis. The compound shows large room-temperature thermopower of \sim180 μ\muV/K, which is substantially higher than those of Lix_{x}CoO2_{2} and Nay_{y}CoO2_{2}. The figure of merit for the polycrystalline sample increases rapidly with increasing temperature, and it achieves nearly 104^{-4} K1^{-1} at 300 K, suggesting that Lix_{x}Nay_{y}CoO2_{2} system is a promising candidate for thermoelectric applications.Comment: Submitted to AP
    corecore