35 research outputs found

    Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament

    Full text link
    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti: Sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ~0.8%. Our observation provides a promising way of remote identification and location of chemical species in atmosphere by rotational Raman scattering of molecules.Comment: 4 pages, 4 figure

    Remote creation of strong and coherent emissions in air with two-color ultrafast laser pulses

    Full text link
    We experimentally demonstrate generation of strong narrow-bandwidth emissions with excellent coherent properties at ~391 nm and ~428 nm from molecular ions of nitrogen inside a femtosecond filament in air by an orthogonally polarized two-color driver field (i. e., 800 nm laser pulse and its second harmonic). The durations of the coherent emissions at 391 nm and 428 nm are measured to be ~2.4 ps and ~7.8 ps respectively, both of which are much longer than the duration of the pump and its second harmonic pulses. Furthermore, the measured temporal decay characteristics of the excited molecular systems suggest an "instantaneous" population inversion mechanism that may be achieved in molecular nitrogen ions at an ultrafast time scale comparable to the 800 nm pump pulse.Comment: 19 pages, 4 figure

    Self-induced white-light seeding laser in a femtosecond laser filament

    Full text link
    We report, for what we believe to be the first time, on the generation of remote self-seeding laser amplification by using only one 800 nm Ti:Sapphire femtosecond laser pulse. The laser pulse (~ 40 fs) is first used to generate a filament either in pure nitrogen or in ambient air in which population inversion between ground and excited states of nitrogen molecular ions is realized. Self-induced white light inside the filament is then serving as the seed to be amplified. The self-induced narrow-band laser at 428 nm has a pulse duration of ~2.6 ps with perfect linear polarization property. This finding opens new possibilities for remote detection in the atmosphere.Comment: 18 pages, 5 figure

    Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study

    Full text link
    We report on the investigation on harmonic-seeded remote laser emissions at 391 nm wavelength from strong-field ionized nitrogen molecules in three different gas mixtures, i.e., N2-Ar, N2-Xe and N2-Ne. We observed a decrease in the remote laser intensity in the N2-Xe mixture because of the decreased clamped intensity in the filament; whereas in the N2-Ne mixture, the remote laser intensity slightly increases because of the increased clamped intensity within the filament. Remarkably, although the clamped intensity in the filament remains nearly unchanged in the N2-Ar mixture because of the similar ionization potentials of N2 and Ar, a significant enhancement of the lasing emission is realized in the N2-Ar mixture. The enhancement is attributed to the stronger third harmonic seed, and longer gain medium due to the extended filament.Comment: 10 pages, 5 figure

    Second harmonic generation in a centrosymmetric gas medium with spatiotemporally focused intense femtosecond laser pulses

    Full text link
    We demonstrate unexpectedly strong second harmonic generation (SHG) in Argon gas by use of spatiotemporally focused (SF) femtosecond laser pulses. The resulting SHG by the SF scheme at a 75 cm distance shows a significantly enhanced efficiency than that achieved with conventional focusing scheme, which offers a new promising possibility for standoff applications. Our theoretical calculations reasonably reproduce the experimental observations, which indicate that the observed SHG mainly originates from the gradient of nonuniform plasma dynamically controlled by the SF laser field.Comment: 14 pages, 4 figure

    Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    Full text link
    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.Comment: 9 pages, 5 figure

    Driving forces and typologies behind household energy consumption disparities in China: A machine learning-based approach

    Get PDF
    Establishing an intuitive link between driving factors of household energy consumption activities and inequalities is important for the understanding of household heterogeneity in energy consumption behaviours. This paper proposes a novel typology framework based on machine learning approaches and data from 3637 Chinese households in 2014 from 85 cities. Activity-based energy consumption was measured, highlighting inequalities across activities, regions and household types. The results showed significant energy consumption disparities between urban/rural and north/south households, especially in cooking, space heating and vehicle activities. By identifying driving factors of energy consumption, a new household typology classified samples into 6 (all), 6 (urban) and 7 (rural) types. Within these types, households with similar demographic structures, lifestyles and energy consumption habits were clustered. Demographic structure, region, and primary energy demand were used as the basis for the typology. The findings demonstrated how household lifestyle differences explained the cause and underlying driving factors of urban-rural energy consumption inequalities and provided suggestions for city-by-city and type-by-type measurements to support effective low-carbon transformation in cities
    corecore