160 research outputs found

    Response of railway track system on poroelastic half-space soil medium subjected to a moving train load

    Get PDF
    AbstractBased on the dynamic poroelastic theory of Biot, dynamic responses of a track system and poroelastic half-space soil medium subjected to moving train passages are investigated by the substructure method. The whole system is divided into two separately formulated substructures, the track and the ground, and the rail is described by introducing the Green function for an infinitely long Euler beam subjected to the action of moving axle loads of the train and the reactions of the sleeper. Sleepers are represented by a continuous mass and the effect of the ballast is considered by introducing the Cosserat model for granular medium. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency-wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain train speed. Computed results show that the shape of the rail displacements of the elastic and poroelastic soil medium are in good agreement with each other of the low train velocity, but the result of the poroelastic soil medium is significantly different to that of the elastic soil medium for the high train velocity which is higher than Rayleigh-wave speed in the soil. The influence of the soil intrinsic permeability on soil responses is discussed with great care in both time domain and frequency domain. The dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity

    Behavior of Braced Deep Excavation in Soft Soils

    Get PDF
    A successful case study of braced deep excavation in Hangzhou, 1994, is presented in this paper. A stiff braced retaining structure was adopted through theoretical analysis, the bottom soil of the pit was strengthened by cement mixed grouting to increase the stability of the retaining structure. The excavation was completed smoothly in short period of time, displacements surrounded the pit and stresses in braces were measured during the whole procedure of excavation and the measured results agreed well with the prediction by FEM. Some conclusions drawn from this successful case may be instructional to other similar engineerings

    Characteristics of Braced Excavation under Asymmetrical Loads

    Get PDF
    Numerous excavation practices have shown that large discrepancies exist between field monitoring data and calculated results when the conventional symmetry-plane method (with half-width) is used to design the retaining structure under asymmetrical loads. To examine the characteristics of a retaining structure under asymmetrical loads, we use the finite element method (FEM) to simulate the excavation process under four different groups of asymmetrical loads and create an integrated model to tackle this problem. The effects of strut stiffness and wall length are also investigated. The results of numerical analysis clearly imply that the deformation and bending moment of diaphragm walls are distinct on different sides, indicating the need for different rebar arrangements when the excavation is subjected to asymmetrical loads. This study provides a practical approach to designing excavations under asymmetrical loads. We analyze and compare the monitoring and calculation data at different excavation stages and find some general trends. Several guidelines on excavation design under asymmetrical loads are drawn

    Behavior of Double-row Pile Retaining Structure for Deep Excavation in Soft Clay

    Get PDF
    An excavation of 10.5m deep and 110m x 70m in plane with double-row pile retaining structure in soft clay has been completed, which is of severa1 advantages, such as elimination of lateral deflection and ground surface settlement, low cost and short duration of excavation. This paper presents tile design considerations, procedure of construction and excavation, behavior of this type of retaining structure. The FEM analysis has been carried for prediction of lateral deflection and stress, the results from FEM method conformed well with field measurement, some conclusions drawn from the design and construction Mil be valuable for future construction in similar engineering

    PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting

    Get PDF
    Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmentingmainly focused on the issue of ameliorating precision instead of payingmuch attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream

    Numerical analysis for supporting and deformation of complex foundation pit groups in unstable areas of karst strata

    Get PDF
    Due to the extensive karst development zone in karst areas, the stability of the underground soil layer is poor. The support of foundation pits in this area will be affected by complex environmental factors, and if not handled properly, it will cause significant safety hazards and economic losses. In this paper, the three-dimensional finite element model of the complex foundation pit and adjacent foundation pit group was established with the help of Midas GTS NX numerical software, and numerical simulation was carried out for the whole foundation pit excavation and construction process, and the deformation results of the adjacent foundation pit support structure of the complex foundation pit group and the soil outside the foundation pit were obtained. The results show that the underground wall of the complex foundation pit shifted to the north under the action of buttresses, with a similar “cantilever” displacement pattern on the south side of the underground wall in the center, a “push-back displacement” on the north side of the underground wall in the center, and a “ventral” displacement pattern at the corners of the grounded wall and on the east and west sides. Combined with the field measurement data, the support piles in the internal support system have a “cantilever” displacement pattern under the condition of massive soil unloading in the vicinity of the foundation pit, while the supporting piles show a “parabolic” displacement pattern under the action of the corner internal support. The deformation characteristics of the foundation pit in the presence of adjacent pits are significantly different from the results based on empirical laws. The results of the above study will provide useful technical guidance for the safety of excavation support for foundation pit groups in complex environments and the reasonable control of the surrounding environment

    Cyprinus carpio Decoction Improves Nutrition and Immunity and Reduces Proteinuria through Nephrin and CD2AP Expressions in Rats with Adriamycin-Induced Nephropathy

    Get PDF
    Cyprinus carpio decoction (CCD) is a well-known Chinese food medicine formula, accepted widely as a useful therapy in preventing edema and proteinuria caused by renal disease. However, the mechanism underlying this effect remains unclear. The current study investigated the potential mechanism of CCD in alleviating nephropathy induced by adriamycin (ADR) in rats. 70  eight-week-old Wistar rats were randomly divided into normal, model, fosinopril, YD, YG groups. All rats except for the normal group received 6.5 mg/kg·bw of ADR injection into the vena caudalis once. Different doses of CCD (11.3 and 22.5 g kg−1) were lavaged to rats in YD and YG groups, respectively. Then the serum biochemical values of the total protein (TP), albumin (ALB), blood urea nitrogen (BUN), creatinine (Cr), electrolyte levels, and the urinary protein (UP) content in 12 hr urine were measured. Interleukin-4 (IL-4) and interferon (INF-γ) were measured by enzyme-like immunosorbent assay (ELISA). The pathomorphological analysis was observed using light and electron microscopy, and the expressions of nephrin and CD2-associated protein (CD2AP) in renal tissues were determined by immunohistochemical assay. The results indicated that CCD can relieve ADR-induced nephropathy (ADN) by improving the nutrition status, regulating the immunity, and inhibiting proteinuria by increasing nephrin and CD2AP expressions

    Mixed Boundary-Value Analysis of Rocking Vibrations of an Elastic Strip Foundation on Elastic Soil with Saturated Substrata

    Get PDF
    The dynamic response of an elastic strip foundation lying on elastic soil with saturated substrata is greatly affected by pore pressure induced by a rocking moment. In this paper, we explore the mixed boundary-value problem of the rocking vibration of an elastic strip foundation on elastic soil with saturated substrata via Biot dynamic equations. First, the wave equations concerning both the single-phase elastic layer and the saturated half-space are solved using a Fourier integral transform technique. The dual integral equations of the rocking vibration of an elastic strip foundation are established according to the mixed boundary conditions. Finally, the relationship of the dynamic compliance coefficient with the dimensionless frequency is obtained by applying Simpson’s rule to conduct numerical calculation. We also analyse the influences of the elastic layer’s thickness and elastic characteristic parameters of the foundation on the rocking vibration

    Integration of Metabolite Profiling and Transcriptome Analysis Reveals Genes Related to Volatile Terpenoid Metabolism in Finger Citron (C. medica var. sarcodactylis)

    Get PDF
    Finger citron (Citrus medica var. sarcodactylis) is a popular ornamental tree and an important source of essential oils rich in terpenoids, but the mechanisms behind volatile formation are poorly understood. We investigated gene expression changes combined with volatile profiling of ten samples from three developing organs: flower, leaf, and fruit. A total of 62 volatiles were identified with limonene and γ-terpinene being the most abundant ones. Six volatiles were identified using partial least squares discriminant analysis (PLS-DA) that could be used as markers for distinguishing finger citron from other citrus species. RNA-Seq revealed 1,611,966,118 high quality clean reads that were assembled into 32,579 unigenes. From these a total of 58 terpene synthase (TPS) gene family members were identified and the spatial and temporal distribution of their transcripts was measured in developing organs. Transcript levels of transcription factor genes AP2/ERF (251), bHLH (169), bZIP (76), MYB (155), NAC (184), and WRKY (66) during finger citron development were also analyzed. From extracted subnetworks of three modules constructed by weighted gene co-expression network analysis (WGCNA), thirteen TPS genes and fifteen transcription factors were suggested to be related to volatile terpenoid formation. These results provide a framework for future investigations into the identification and regulatory network of terpenoids in finger citron
    corecore