4,767 research outputs found

    Thermal Timescale Mass Transfer Rates in Intermediate-Mass X-ray Binaries

    Full text link
    Thermal timescale mass transfer generally occurs in close binaries where the donor star is more massive than the accreting star. The mass transfer rates are usually estimated in terms of the Kelvin-Helmholtz timescale of the donor star. But recent investigations indicate that this method may overestimate the real mass transfer rates in accreting white dwarf or neutron star binary systems. We have systematically investigated the thermal-timescale mass transfer processes in intermediate-mass X-ray binaries, by calculating binary evolution sequences with various initial donor masses and orbital periods. From the calculated results we find that on average the mass transfer rates are lower than traditional estimates by a factor of ∼4\sim 4.Comment: 13 pages, 4 figures, and 2 tables, accepted for publication in A&

    Energy coupling in intense laser solid interactions: material properties of gold

    Full text link
    In the double-cone ignition inertial confinement fusion scheme, high density DT fuel is rapidly heated with high-flux fast electrons, which are generated by short and intense laser pulses. Gold cone target is usually used to shorten the distance between the critical surface and the compressed high density DT core. The material properties of solid gold may affect the generation and transport of fast electrons significantly, among which the effects of ionization and collision are the main concerns. In this work, the effects of ionization, collision and blow-off plasma on laser energy absorption rate are investigated using the LAPINS code: A three-stage model is adopted to explain the mechanism of fast electron generation and the change in laser energy absorption rate. With the increase of the charge state of Au ions, the laser-plasma interaction transfers to the later stage, resulting in a decrease in laser energy absorption rate. Collision has both beneficial and harmful effects. On one hand, collision provides a thermal pressure that makes it easier for electrons to escape into the potential well in front of the target and be accelerated in the second stage. On the other hand, collision increases stopping power and suppress electron recirculation within the target in the third stage. The vacuum sheath field behind the target enhances the electron circulation inside the target and thus improves the laser energy absorption, however this effect will be suppressed when the blow-off plasma density behind the target increases or collision is considered.Comment: accepted by Phys. Plasma

    Infrastructures and services for remote sensing data production management across multiple satellite data centers

    Get PDF
    With the number of satellite sensors and date centers being increased continuously, it is becoming a trend to manage and process massive remote sensing data from multiple distributed sources. However, the combination of multiple satellite data centers for massive remote sensing (RS) data collaborative processing still faces many challenges. In order to reduce the huge amounts of data migration and improve the efficiency of multi-datacenter collaborative process, this paper presents the infrastructures and services of the data management as well as workflow management for massive remote sensing data production. A dynamic data scheduling strategy was employed to reduce the duplication of data request and data processing. And by combining the remote sensing spatial metadata repositories and Gfarm grid file system, the unified management of the raw data, intermediate products and final products were achieved in the co-processing. In addition, multi-level task order repositories and workflow templates were used to construct the production workflow automatically. With the help of specific heuristic scheduling rules, the production tasks were executed quickly. Ultimately, the Multi-datacenter Collaborative Process System (MDCPS) were implemented for large-scale remote sensing data production based on the effective management of data and workflow. As a consequence, the performance of MDCPS in experiments environment showed that those strategies could significantly enhance the efficiency of co-processing across multiple data centers

    Half Metallic Bilayer Graphene

    Get PDF
    Charge neutral bilayer graphene has a gapped ground state as transport experiments demonstrate. One of the plausible such ground states is layered antiferromagnetic spin density wave (LAF) state, where the spins in top and bottom layers have same magnitude with opposite directions. We propose that lightly charged bilayer graphene in an electric field perpendicular to the graphene plane may be a half metal as a consequence of the inversion and particle-hole symmetry broken in the LAF state. We show this explicitly by using a mean field theory on a 2-layer Hubbard model for the bilayer graphene.Comment: 4+ pages, 4 figure
    • …
    corecore