110 research outputs found
Potent Apoptotic Response Induced by Chloroacetamidine Anthrathiophenediones in Bladder Cancer Cells.
We previously found that two neighboring G-quadruplexes behave as a molecular switch controlling the expression of HRAS (Cogoi, S.; Schekotikhin, A. E.; Xodo, L. E. Nucl. Acids Res. 2014, DOI: 10.1093/nar/gku574). In this study we have designed anthrathiophenediones with two hloroacetamidine-containing side chains (CATDs) as G-quadruplex binders and have examined their anticancer activity in T24 bladder cancer cells bearing mutant HRAS and in T24 xenografts. The designed CATDs (3a 12e), bearing alkyl side chains of different length, penetrate T24 cancer cells more than their analogues with guanidine-containing side chains. The lead compounds 3a and 3c inhibit HRAS expression, metabolic activity, and colony formation in T24 cancer cells. They also activate a strong apoptotic response, as indicated by PARP-1, caspases 3/7, and annexin V/propidium iodide assays.
Apoptosis occurs under conditions where cyclin D1 is down-regulated and the cell cycle arrested in G2 phase. Finally, compound 3a inhibits the growth of T24 xenografts and increases the median survival time of nude mice
Role of poly [adp-ribose] polymerase 1 in activating the kirsten ras (Kras) gene in response to oxidative stress
In pancreatic Panc-1 cancer cells, an increase of oxidative stress enhances the level of 7,8-dihydro-8-oxoguanine (8OG) more in the KRAS promoter region containing G4 motifs than in non-G4 motif G-rich genomic regions. We found that H2O2 stimulates the recruitment to the KRAS promoter of poly [ADP-ribose] polymerase 1 (PARP-1), which efficiently binds to local G4 structures. Upon binding to G4 DNA, PARP-1 undergoes auto PARylation and thus becomes negatively charged. In our view this should favor the recruitment to the KRAS promoter of MAZ and hnRNP A1, as these two nuclear factors, because of their isoelectric points >7, are cationic in nature under physiological conditions. This is indeed supported by pulldown assays which showed that PARP-1, MAZ, and hnRNP A1 form a multiprotein complex with an oligonucleotide mimicking the KRAS G4 structure. Our data suggest that an increase of oxidative stress in Panc-1 cells activates a ROS-G4-PARP-1 axis that stimulates the transcription of KRAS. This mechanism is confirmed by the finding that when PARP-1 is silenced by siRNA or auto PARylation is inhibited by Veliparib, the expression of KRAS is downregulated. When Panc-1 cells are treated with H2O2 instead, a strong up-regulation of KRAS transcription is observed
Lipid-modified G4-decoy oligonucleotide anchored to nanoparticles:delivery and bioactivity in pancreatic cancer cells
KRAS is mutated in >90% of pancreatic ductal adenocarcinomas. As its inactivation leads to tumour regression, mutant KRAS is considered an attractive target for anticancer drugs. In this study we report a new delivery strategy for a G4-decoy oligonucleotide that sequesters MAZ, a transcription factor essential for KRAS transcription. It is based on the use of palmitoyl-oleyl-phosphatidylcholine (POPC) liposomes functionalized with lipid-modified G4-decoy oligonucleotides and a lipid-modified cell penetrating TAT peptide. The potency of the strategy in pancreatic cancer cells is demonstrated by cell cytometry, confocal microscopy, clonogenic and qRT-PCR assays
The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: Implications on transcription
KRAS is one of the most mutated genes in human cancer. It is controlled by a G4 motif located upstream of the transcription start site. In this paper, we demonstrate that 8-oxoguanine (8-oxoG), being more abundant in G4 than in non-G4 regions, is a new player in the regulation of this oncogene. We designed oligonucleotides mimicking the KRAS G4-motif and found that 8-oxoG impacts folding and stability of the G-quadruplex. Dimethylsulphate-footprinting showed that the G-run carrying 8-oxoG is excluded from the G-tetrads and replaced by a redundant G-run in the KRAS G4-motif. Chromatin immunoprecipitation revealed that the base-excision repair protein OGG1 is recruited to the KRAS promoter when the level of 8-oxoG in the G4 region is raised by H2O2. Polyacrylamide gel electrophoresis evidenced that OGG1 removes 8-oxoG from the G4-motif in duplex, but when folded it binds to the G-quadruplex in a non-productive way. We also found that 8-oxoG enhances the recruitment to the KRAS promoter of MAZ and hnRNP A1, two nuclear factors essential for transcription. All this suggests that 8-oxoG in the promoter G4 region could have an epigenetic potential for the control of gene expression
Rare spontaneous monochorionic dizygotic twins: a case report and a systematic review
Background: Monochorionic dizygotic twins are a rare condition, mostly related to assisted reproductive technology. This type of twinning is burdened by the same risk of pregnancy complications found in monochorionic monozygotic pregnancies. Case presentation: We report a case of spontaneous monochorionic dizygotic twins sharing situs inversus abdominalis and isolated levocardia, with only one twin affected by biliary atresia with splenic malformation syndrome. We also conducted a literature review of the 14 available documented monochorionic dizygotic twin gestations spontaneously conceived. Conclusions: It is still unclear how this unusual type of twinning can occur in spontaneous conception. The evidence so far suggest the importance to timely diagnose the chorionicity, in order to adequately manage the typical complications associated with monochorionicity
Fetal growth at term and placental oxidative stress in a tissue micro-array model: a histological and immunohistochemistry study
This study examines 8-hydroxyguanine (8-oxo-Gua) staining in placental tissue samples based on fetal size at birth as well as its relationships with placental histology and other pregnancy variables. This prospective cohort study included women > 18 years with a singleton pregnancy, a live fetus, fluency in Italian, and delivery at term. A total of 165 pregnancies were included in the study. The nuclear syncytiotrophoblast 8-oxo-Gua staining score in LGA was substantially greater than in late FGR (p < 0.05), although the cytoplasm score was lower in SGA and LGA than in AGA (p < 0.05). Furthermore, a sex-specific pattern of 8-oxo-Gua staining was discovered in single-term placentas, with more oxidative damage found in the nuclei of syncytiotrophoblast cells and stromal and endothelial cells in AGA males compared to AGA females (p < 0.05). Second, the histological pattern of late FGR placentae differed by gender. Finally, a significant correlation (p < 0.05) was found between high-intensity 8-oxo-Gua staining in the cytoplasm of syncytiotrophoblast cells and thrombi in the chorionic plate or villi in males. On the other hand, female fetuses demonstrated a significant connection (p < 0.05) between high-intensity 8-oxo-Gua staining in endothelial and stromal cells and high birthweight MoM values. Our findings indicated a significant variation in the oxidative stress pattern between male and female placentae, implying that fetal growth is regulated differently in the two sexes
Dual-targeting peptides@PMO, a mimetic to the pro-apoptotic protein Smac/DIABLO for selective activation of apoptosis in cancer cells
The refractoriness of tumor cells to apoptosis represents the main mechanism of resistance to chemotherapy. Smac/DIABLO mimetics proved to be effective in overcoming cancer-acquired resistance to apoptosis as a consequence of overexpression of the anti-apoptotic proteins XIAP, cIAP1, and cIAP2. In this work, we describe a dual-targeting peptide capable of selectively activating apoptosis in cancer cells. The complex consists of a fluorescent periodic mesoporous organosilica nanoparticle that carries the short sequences of Smac/DIABLO bound to the αvβ3–integrin ligand. The dual-targeting peptide @PMO shows significantly higher toxicity in αvβ3-positive HeLa cells with respect to αvβ3-negative Ht29 cells. @PMO exhibited synergistic effects in combination with oxaliplatin in a panel of αvβ3-positive cancer cells, while its toxicity is overcome by XIAP overexpression or integrin β3 silencing. The successful uptake of the molecule by αvβ3-positive cells makes @PMO promising for the re-sensitization to apoptosis of many cancer types
Peri-Operative Management of Patients Undergoing Fenestrated-Branched Endovascular Repair for Juxtarenal, Pararenal and Thoracoabdominal Aortic Aneurysms: Preventing, Recognizing and Treating Complications to Improve Clinical Outcomes
The advent and refinement of complex endovascular techniques in the last two decades has revolutionized the field of vascular surgery. This has allowed an effective minimally invasive treatment of extensive disease involving the pararenal and the thoracoabdominal aorta. Fenestrated-branched EVAR (F/BEVAR) now represents a feasible technical solution to address these complex diseases, moving the proximal sealing zone above the renal-visceral vessels take-off and preserving their patency. The aim of this paper was to provide a narrative review on the peri-operative management of patients undergoing F/BEVAR procedures for juxtarenal abdominal aortic aneurysm (JAAA), pararenal abdominal aortic aneurysm (PRAA) or thoracoabdominal aortic aneurism (TAAA). It will focus on how to prevent, diagnose, and manage the complications ensuing from these complex interventions, in order to improve clinical outcomes. Indeed, F/BEVAR remains a technically, physiologically, and mentally demanding procedure. Intraoperative adverse events often require prolonged or additional procedures and complications may significantly impact a patient’s quality of life, health status, and overall cost of care. The presence of standardized preoperative, perioperative, and postoperative pathways of care, together with surgeons and teams with significant experience in aortic surgery, should be considered as crucial points to improve clinical outcomes. Aggressive prevention, prompt diagnosis and timely rescue of any major adverse events following the procedure remain paramount clinical needs
Tattoo removal in the typical adolescent
<p>Abstract</p> <p>Background</p> <p>Although popular tattoos are often regretted later on for different reasons. Nevertheless, tattoo removal is a complicated and costly procedure seldom providing satisfactory results. The aim of this study was to investigate the awareness of the implications of tattoo removal among a substantial sample of Italian secondary school adolescents.</p> <p>Findings</p> <p>Students were recruited by a stratified convenience sample and surveyed by a self administered questionnaire. Logistic regression analysis was performed, reporting adjusted Odds Ratios (OR), with 95% Confidence Interval (CI).</p> <p>4,277 pupils returned a usable questionnaire. Piercings were more frequently undertaken than tattoos. Only 40% of the respondents were aware of the issues related to tattoo removal. Males and pupils with younger fathers were less likely to be aware, whereas students satisfied with their physical appearance and those with a positive attitude towards body art were more likely to be aware.</p> <p>Conclusions</p> <p>Male adolescents with younger fathers can be regarded as the ideal target of corporate health education programs driven by school counsellors and primary care physicians.</p
G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription
In human and mouse, the promoter of the KRAS gene contains a nuclease hypersensitive polypurine–polypyrimidine element (NHPPE) that is essential for transcription. An interesting feature of the polypurine G-rich strand of NHPPE is its ability to assume an unusual DNA structure that, according to circular dichroism (CD) and DMS footprinting experiments, is attributed to an intramolecular parallel G-quadruplex, consisting of three G-tetrads and three loops. The human and mouse KRAS NHPPE G-rich strands display melting temperature of 64 and 73°C, respectively, as well as a K(+)-dependent capacity to arrest DNA polymerase. Photocleavage and CD experiments showed that the cationic porphyrin TMPyP4 stacks to the external G-tetrads of the KRAS quadruplexes, increasing the T(m) by ∼20°C. These findings raise the intriguing question that the G-quadruplex formed within the NHPPE of KRAS may be involved in the regulation of transcription. Indeed, transfection experiments showed that the activity of the mouse KRAS promoter is reduced to 20% of control, in the presence of the quadruplex-stabilizing TMPyP4. In addition, we found that G-rich oligonucleotides mimicking the KRAS quadruplex, but not the corresponding 4-base mutant sequences or oligonucleotides forming quadruplexes with different structures, competed with the NHPPE duplex for binding to nuclear proteins. When vector pKRS-413, containing CAT driven by the mouse KRAS promoter, and KRAS quadruplex oligonucleotides were co-transfected in 293 cells, the expression of CAT was found to be downregulated to 40% of the control. On the basis of these data, we propose that the NHPPE of KRAS exists in equilibrium between a double-stranded form favouring transcription and a folded quadruplex form, which instead inhibits transcription. Such a mechanism, which is probably adopted by other growth-related genes, provides useful hints for the rational design of anticancer drugs against the KRAS oncogene
- …