19 research outputs found

    Antibacterial performance of a porous Cu-bearing titanium alloy by laser additive manufacturing

    Get PDF
    Porphyromonas gingivalis (P. gingivalis) is the most common species that causes peri-implantitis. It forms an irreversible dense biofilm and causes inflammation. A novel 3D-printed porous TC4-6Cu alloy was fabricated using selective laser melting (SLM) technology for the dental implant, which is anticipated to inhibit biofilm formation. We attempted to investigate the antibacterial ability and antibacterial mechanism of the 3D-printed porous TC4-6Cu alloy against P. gingivalis. This work used scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) to detect the antimicrobial ability of the alloy against sessile P. gingivalis. The results indicated that the 3D-printed porous TC4-6Cu alloy could cause bacterial fragmentation and deformation. Plate antimicrobial counting experiments showed that the antibacterial rates of the alloy against adherent bacteria and planktonic bacteria after 24 h were 98.05% and 73.92%, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cu2+ were tested to appraise the antibacterial property of the alloy against planktonic P. gingivalis. The relationship between the antibacterial mechanism of the alloy with oxidative stress was evaluated through ROS fluorescence intensity and protein leakage concentration. The results revealed that the alloy significantly eliminated adherent bacteria and inhibited biofilm formation. Moreover, 3D-printed porous TC4-6Cu alloy demonstrated significant bactericidal ability by inducing the production of reactive oxygen species (ROS), which could result in protein leakage from the bacterial cell membrane. This research may open a new perspective on the development and biomedical applications for dental implantation

    Analysis of Resonance Transition Periodic Orbits in the Circular Restricted Three-Body Problem

    No full text
    Resonance transition periodic orbits exist in the chaotic regions where the 1:1 resonance overlaps with nearby interior or exterior resonances in the circular restricted three-body problem (CRTBP). The resonance transition periodic orbits have important applications for tour missions between the interior and the exterior regions of the system. In this work, following the increase of the mass parameter μ in the CRTBP model, we investigate the breakup of the first-order resonant periodic families and their recombination with the resonance transition periodic families. In this process, we can describe in detail how the 1:1 resonance gradually overlaps with nearby first-order resonances with increasing strength of the secondary’s perturbation. Utilizing the continuation method, features of the resonance transition periodic families are discussed and characterized. Finally, an efficient approach to finding these orbits is proposed and some example resonance transition periodic orbits in the Sun–Jupiter system are presented

    Analysis of Resonance Transition Periodic Orbits in the Circular Restricted Three-Body Problem

    No full text
    Resonance transition periodic orbits exist in the chaotic regions where the 1:1 resonance overlaps with nearby interior or exterior resonances in the circular restricted three-body problem (CRTBP). The resonance transition periodic orbits have important applications for tour missions between the interior and the exterior regions of the system. In this work, following the increase of the mass parameter μ in the CRTBP model, we investigate the breakup of the first-order resonant periodic families and their recombination with the resonance transition periodic families. In this process, we can describe in detail how the 1:1 resonance gradually overlaps with nearby first-order resonances with increasing strength of the secondary’s perturbation. Utilizing the continuation method, features of the resonance transition periodic families are discussed and characterized. Finally, an efficient approach to finding these orbits is proposed and some example resonance transition periodic orbits in the Sun–Jupiter system are presented

    Relationship between Changes in Intestinal Microorganisms and Effect of High Temperature on the Growth and Development of Bombyx mori Larvae

    No full text
    Temperature is an important environmental factor affecting the growth and development of silkworm (Bombyx mori). To analyze the effect of intestinal microbes on silkworm in response to a high-temperature environment, this study used a combination of high throughput sequencing and biochemical assays to detect silkworm intestinal microbes treated with high temperature for 72 h. The results show that high temperature affects the intestinal microbes of silkworm and that there are sex differences, specifically, females were more sensitive. The changes in the metabolism and transport ability of silkworm intestinal tissues under high temperature are related to the intestinal microbes. High temperatures may affect the intestinal microbes of silkworms, regulating the activity of related digestive enzymes and substance transport in the intestine, thereby affecting the silkworm’s digestion and absorption of nutrients, and ultimately affecting growth and development
    corecore