3 research outputs found

    Prognosis Prediction of Colorectal Cancer Using Gene Expression Profiles

    Get PDF
    Background: Investigation on prognostic markers for colorectal cancer (CRC) deserves efforts, but data from China are scarce. This study aimed to build a prognostic algorithm using differentially expressed gene (DEG) profiles and to compare it with the TNM staging system in their predictive accuracy for CRC prognosis in Chinese patients.Methods: DEGs in six paired tumor and corresponding normal tissues were determined using RNA-Sequencing. Subsequently, matched tumor and normal tissues from 127 Chinese patients were assayed for further validation. Univariate and multivariate Cox regressions were used to identify informative DEGs. A predictive index (PI) was derived as a linear combination of the products of the DEGs and their Cox regression coefficients. The combined predictive accuracy of the DEGs-based PI and tumors' TNM stages was also examined by a logistic regression model including the two predictors. The predictive performance was evaluated with the area under the receiver operating characteristics (AUCs).Results: Out of 75 candidate DEGs, we identified 10 DEGs showing statistically significant associations with CRC survival. A PI based on these 10 DEGs (PI-10) predicted CRC survival probability more accurately than the TNM staging system [AUCs for 3-year survival probability 0.73 (95% confidence interval: 0.64, 0.81) vs. 0.68 (0.59, 0.76)] but comparable to a simplified PI (PI-5) using five DEGs (LOC646627, BEST4, KLF9, ATP6V1A, and DNMT3B). The predictive accuracy was improved further by combining PI-5 and the TNM staging system [AUC for 3-year survival probability: 0.72 (0.63, 0.80)].Conclusion: Prognosis prediction based on informative DEGs might yield a higher predictive accuracy in CRC prognosis than the TNM staging system does

    Identification of molecular subgroups and establishment of risk model based on the response to oxidative stress to predict overall survival of patients with lung adenocarcinoma

    No full text
    Abstract Objective Oxidative stress is associated with the occurrence and development of lung cancer. However, the specific association between lung cancer and oxidative stress is unclear. This study aimed to investigate the role of oxidative stress in the progression and prognosis of lung adenocarcinoma (LUAD). Methods The gene expression profiles and corresponding clinical information were collected from GEO and TCGA databases. Differentially expressed oxidative stress-related genes (OSRGs) were identified between normal and tumor samples. Consensus clustering was applied to identify oxidative stress-related molecular subgroups. Functional enrichment analysis, GSEA, and GSVA were performed to investigate the potential mechanisms. xCell was used to assess the immune status of the subgroups. A risk model was developed by the LASSO algorithm and validated using TCGA-LUAD, GSE13213, and GSE30219 datasets. Results A total of 40 differentially expressed OSRGs and two oxidative stress-associated subgroups were identified. Enrichment analysis revealed that cell cycle-, inflammation- and oxidative stress-related pathways varied significantly in the two subgroups. Furthermore, a risk model was developed and validated based on the OSRGs, and findings indicated that the risk model exhibits good prediction and diagnosis values for LUAD patients. Conclusion The risk model based on the oxidative stress could act as an effective prognostic tool for LUAD patients. Our findings provided novel genetic biomarkers for prognosis prediction and personalized clinical treatment for LUAD patients
    corecore