118 research outputs found

    Past studies and potential measures for rehabilitation of the shallow lake (Lake Ludas)

    Get PDF
    Lake Ludaš has been under a strong anthropogenic influence for a very long time, so the history of fruitful scientific investigation was very often connected with the evaluation of a human impact and potential rehabilitation measures. Unfortunately, attempts to improve the lake's natural status remain more in the field of theoretical models than concrete practical solutions. Aiming to better understand the potential of different rehabilitation measures for Lake Ludaš, we combined our ecological analyses (unpublished results) and the literature survey. The continuous massive cyanobacterial bloom and the formation of a thick sediment layer rich in different organic and inorganic pollutants represent two major challenges in the lake's rehabilitation. The unknown ecological role of invasive species that have already colonised Lake Ludaš will make the attempts to improve conditions in the lake even more challenging. The reduction of nutrient load, changes in the intensity and directions of water circulation, as well as top sediment layer removal in the lake, are measures under consideration for several decades. But their combination, order of implementation and possibilities of successful execution are still under debate. However, there is no doubt that the restoration of a natural hydrological regime should be a key step in the rehabilitation of Lake Ludaš

    Different pathways of nitrogen and phosphorus regeneration mediated by extracellular enzymes in temperate lakes under various trophic state

    Get PDF
    Several Italian and Chinese temperate lakes with soluble reactive phosphorus concentrations &lt; 0.015 mg L-1 were studied to estimate nitrogen and phosphorus regeneration mediated by microbial decomposition and possible different mechanisms driven by prevailing oligo- or eutrophic conditions. Leucine aminopeptidase (LAP), beta-glucosidase (GLU) and alkaline phosphatase (AP), algal, and bacterial biomass were related to trophic and environmental variables. In the eutrophic lakes, high algal and particulate organic carbon concentrations stimulated bacterial respiration (&gt; 20 mu g C L-1 h(-1)) and could favor the release of inorganic phosphorus. High extracellular enzyme activities and phosphorus solubilizing bacteria abundance in sediments accelerated nutrient regeneration. In these conditions, the positive GLU-AP relationship suggested the coupling of carbon and phosphorus regeneration; an efficient phosphorus regeneration and high nitrogen levels (up to 0.067 and 0.059 mg L-1 NH4 and NO3 in Italy; 0.631 and 1.496 mg L-1 NH4 and NO3 in China) led to chlorophyll a peaks of 14.9 and 258.4 mu g L-1 in Italy and China, respectively, and a typical algal composition. Conversely, in the oligo-mesotrophic lakes, very low nitrogen levels (in Italy, 0.001 and 0.005 mg L-1 NH4 and NO3, respectively, versus 0.053 and 0.371 mg L-1 in China) induced high LAP, while low phosphorus (33.6 and 46.3 mu g L-1 total P in Italy and China, respectively) led to high AP. In these lakes, nitrogen and phosphorus regeneration were coupled, as shown by positive LAP-AP relationship; however, the nutrient demand could not be completely met without the supply from sediments, due to low enzymatic activity and phosphorus solubilizing bacteria found in this compartment.</p

    Phosphorus fractions and alkaline phosphatase activity in sediments of a large eutrophic Chinese lake (Lake Taihu)

    Get PDF
    Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003-2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)-P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87-95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)-P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)-P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003-2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)-P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87-95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)-P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)-P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication

    Identification and characterization of bone/cartilage-associated signatures in common fibrotic skin diseases

    Get PDF
    Background: Fibrotic skin diseases are characterized by excessive accumulation of the extracellular matrix (ECM) and activation of fibroblasts, leading to a global healthcare burden. However, effective treatments of fibrotic skin diseases remain limited, and their pathological mechanisms require further investigation. This study aims to investigate the common biomarkers and therapeutic targets in two major fibrotic skin diseases, namely, keloid and systemic sclerosis (SSc), by bioinformatics analysis.Methods: The keloid (GSE92566) and SSc (GSE95065) datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We then constructed a protein–protein interaction (PPI) network for the identification of hub genes. We explored the possibility of further functional enrichment analysis of hub genes on the Metascape, GeneMANIA, and TissueNexus platforms. Transcription factor (TF)–hub gene and miRNA–hub gene networks were established using NetworkAnalyst. We fixed GSE90051 and GSE76855 as the external validation datasets. Student’s t-test and receiver operating characteristic (ROC) curve were used for candidate hub gene validation. Hub gene expression was assessed in vitro by quantitative real-time PCR.Results: A total of 157 overlapping DEGs (ODEGs) were retrieved from the GSE92566 and GSE95065 datasets, and five hub genes (COL11A1, COL5A2, ASPN, COL10A1, and COMP) were identified and validated. Functional studies revealed that hub genes were predominantly enriched in bone/cartilage-related and collagen-related processes. FOXC1 and miR-335-5p were predicted to be master regulators at both transcriptional and post‐transcriptional levels.Conclusion: COL11A1, COL5A2, ASPN, COL10A1, and COMP may help understand the pathological mechanism of the major fibrotic skin diseases; moreover, FOXC1 and miR-355-5p could build a regulatory network in keloid and SSc

    The Optimal Width and Mechanism of Riparian Buffers for Storm Water Nutrient Removal in the Chinese Eutrophic Lake Chaohu Watershed

    No full text
    Riparian buffers play an important role in intercepting nutrients entering lakes from non-point runoffs. In spite of its ecological significance, little is known regarding the underlying mechanisms of riparian buffers or their optimal width. In this study, we examined nutrient removal efficiency, including the quantity of nutrients and water quality, in the littoral zone of different types of riparian buffers in the watershed around eutrophic Lake Chaohu (China), and estimated the optimal width for different types of riparian buffers for effective nutrient removal. In general, a weak phosphorus (P) adsorption ability and nitrification-denitrification potential in soil resulted in a far greater riparian buffer demand than before in Lake Chaohu, which may be attributed to the soil degradation and simplification of cover vegetation. In detail, the width was at least 23 m (grass/forest) and 130 m (grass) for total P (TP) and total nitrogen (TN) to reach 50% removal efficiency, respectively, indicating a significantly greater demand for TN removal than that for TP. Additionally, wetland and grass/forest riparian buffers were more effective for TP removal, which was attributed to a high P sorption maximum (Qmax) and a low equilibrium P concentration (EPC0), respectively. The high potential nitrification rate (PNR) and potential denitrification rate (PDR) were responsible for the more effective TN removal efficiencies in grass riparian buffers. The nutrient removal efficiency of different types of riparian buffers was closely related with nutrient level in adjacent littoral zones around Lake Chaohu

    Optimized Parameters and Mechanisms for Simultaneous Nitrogen and Phosphorus Removal in Stormwater Biofilters: A Pilot Study

    No full text
    Nitrogen (N) removal efficiency through denitrification is usually not ideal and stable in biofilter systems due to the deficiency of organic carbon supply and difficulty of formation of anaerobic status, which could be enhanced by regulating the inflow carbon/nitrogen ratio (C/N), outflow water level, retention time, and addition of plant detritus through the pilot-scale stormwater biofilter study. Removal efficiency of ammonium (NH4+-N), soluble reactive phosphorus (SRP), and total phosphorus (34-90%) was significantly higher than that of nitrate (NO3--N), dissolved total nitrogen (DTN), and total nitrogen (TN) (9-25%) in the biofilter systems. The addition of plant detritus (especially herbaceous plant) in biofilter systems can enhance the nitrogen (N) and phosphorus (P) removal efficiency by >24%. Through further regulation of inflow C/N, retention time, and outflow water level to promote denitrification, removal efficiency of NO3--N, DTN, and TN was significantly enhanced and reached up to 83%, 68%, and 73% on average, respectively. However, P leaching increased due to SRP release from iron-bound P caused by anoxia. In the overall consideration of N and P removal, optimized inflow C/N, retention time, and outflow water level are estimated as 10-30, 1-2 h, and 20-40 cm, respectively, which makes a crucial contribution to simultaneous N and P removal

    Nutrient Utilization Strategies of Algae and Bacteria after the Termination of Nutrient Amendment with Different Phosphorus Dosage: A Mesocosm Case

    No full text
    The impacts of nutrient amendment termination on the growth strategies of algae and bacteria were conducted in experimentally designed mesocosm in which two different phosphorus (P) dosages were treated. The algal community composition did not change greatly in Group A (low phosphorus) and Group B (high phosphorus). In Group A, the secretion of bacterial alkaline phosphatase (AP) after nutrient termination stimulated bacterial phosphorus acquisition, which caused the decrease in algal phosphorus levels, in terms of the increase of bacterial abundance and bacterial production, as well as the decrease in chlorophyll a and particulate organic carbon. The algal collapse resulted in dissolved organic carbon secretion, further fuelling bacterial growth. In Group B, excess phosphorus input urged algae to store phosphorus as poly-phosphate. When phosphorus input ceased, in order to maintain their used high phosphorus demand, algae strengthened to gain phosphorus through the hydrolysis of dissolved organic phosphorus in water column and ploy-phosphate inside the cells by AP, evidenced by high algal alkaline phosphatase activity, algal growth continuation, and bacterial growth decline. These facts indicated that phosphorus content should reduce to a lower level than expected, so that algal bloom can be effectively controlled in eutrophic water bodies.</p

    The Optimal Width and Mechanism of Riparian Buffers for Storm Water Nutrient Removal in the Chinese Eutrophic Lake Chaohu Watershed

    No full text
    Riparian buffers play an important role in intercepting nutrients entering lakes from non-point runoffs. In spite of its ecological significance, little is known regarding the underlying mechanisms of riparian buffers or their optimal width. In this study, we examined nutrient removal efficiency, including the quantity of nutrients and water quality, in the littoral zone of different types of riparian buffers in the watershed around eutrophic Lake Chaohu (China), and estimated the optimal width for different types of riparian buffers for effective nutrient removal. In general, a weak phosphorus (P) adsorption ability and nitrification-denitrification potential in soil resulted in a far greater riparian buffer demand than before in Lake Chaohu, which may be attributed to the soil degradation and simplification of cover vegetation. In detail, the width was at least 23 m (grass/forest) and 130 m (grass) for total P (TP) and total nitrogen (TN) to reach 50% removal efficiency, respectively, indicating a significantly greater demand for TN removal than that for TP. Additionally, wetland and grass/forest riparian buffers were more effective for TP removal, which was attributed to a high P sorption maximum (Qmax) and a low equilibrium P concentration (EPC0), respectively. The high potential nitrification rate (PNR) and potential denitrification rate (PDR) were responsible for the more effective TN removal efficiencies in grass riparian buffers. The nutrient removal efficiency of different types of riparian buffers was closely related with nutrient level in adjacent littoral zones around Lake Chaohu

    Dredging effects on P status and phytoplankton density and composition during winter and spring in Lake Taihu, China

    No full text
    Phytoplankton density and composition, together with phosphorus (P) concentrations and size-fractionated alkaline phosphatase activity (APA), were investigated in dredged and undredged zones in Lake Taihu from January to April 2004. P concentrations were also determined in the corresponding interstitial water. Enzyme Labeled Fluorescence (ELF) was used for localizing extracellular phosphatase on phytoplankton cell membranes in April. The increase in phytoplankton density was paralleled by a significant increase in soluble reactive P (SRP) concentrations in the water column and interstitial water at all sites from January to April, with chlorophyte gradually becoming dominant. In February, at the undredged site, more algae dominated by chlorophyte occurred in overlying water, rather than in the surface, coinciding with higher SRP concentrations in overlying and interstitial water. Therefore, P status in the bottom is important to phytoplankton development in terms of density and composition. Undredged sites had higher SRP concentrations in interstitial water than dredged sites. Furthermore, Higher APA was observed, accompanied by higher dissolved organic P (DOP) and lower total P at the undredged site in February. Enzymatic hydrolysis of DOP may have been an additional source of P for phytoplankton. In April, Schroederia sp. was ELF labeled in surface water at the dredged site, which showed markedly lower SRP concentration, but not at the undredged site with higher SRP concentration. Thus, the dredging might regulate algal density and composition in water column by reducing P bioavailability
    corecore