21 research outputs found

    Circular RNA circPVT1 Promotes Proliferation and Invasion Through Sponging miR-125b and Activating E2F2 Signaling in Non-Small Cell Lung Cancer

    Get PDF
    Background/Aims: Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers, however its role in non-small cell lung cancer (NSCLC) tumorigenesis is not well understood. The aim of this study is to identify the expression level of circPVT1 in NSCLC and further investigated its functional relevance with NSCLC progression both in vitro and in vivo. Methods: Quantative real-time PCR was used for the measurement of circPVT1 in NSCLC specimens and cell lines. Fluorescence in situ hybridization analysis (FISH) assay was used for the identification of sublocation of circPVT1 in NSCLC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) were performed to verify the binding of c-Fos at circPVT1 promoter region, and the direct interaction between circPVT1 and miR-125b. Gain- or loss-function assays were performed to evaluate the effects of circPVT1 on cell proliferation and invasion. Western blot and immunohistochemistry assays were performed to detect the protein levels involved in E2F2 pathway. Results: We found that circPVT1 was upregulated in NSCLC specimens and cells. The transcription factor c-Fos binded to the promoter region of circPVT1, resulting in the overexpression of circPVT1 in NSCLC. Knockdown of circPVT1 suppressed NSCLC cell proliferation, migration and invasion, and increased apoptosis. In addition, circPVT1 mediated NSCLC progression via the regulation of E2F2 signaling pathway. More importantly, circPVT1 was predominantly abundant in the cytoplasm of NSCLC cells, and circPVT1 could serve as a competing endogenous RNA to regulate E2F2 expression and tumorigenesis in a miR-125b-dependent manner, which is further verified by using an in vivo xenograft model. Conclusion: circPVT1 promotes NSCLC cell growth and invasion, and may serve as a promising therapeutic target for NSCLC patients. Therefore, silence of circPVT1 could be a future direction to develop a novel treatment strategy

    Study on clearance optimisation and altitude correction of 750 kV AC side for UHVDC converter transformer

    No full text
    AC system which ±800 kV converter station access to commonly used 500 kV voltage level. With the construction of the Northwest Energy Base, a large number of ultra-high-voltage direct current (UHVDC) project are constructing. The backbone voltage in the northwest region is 750 kV. Phase or phase-to-ground clearance the converter transformer 750 kV AC side required will affect the length of the valve hall and the highest altitude of the project close to 3000 m. In order to optimise the 750 kV AC side and meet the engineering requirements in high altitude areas, this paper carried out the true phase-to-ground and phase–phase discharge characteristics test in the gap of 750 kV AC side in Beijing and Tibet, and the gap discharge voltage was then corrected for altitude. At last, the distance at different altitudes of 3000 m and below between the phase-ground and the phase-to-phase at the AC side of converter transformer is obtained. The results provide the design of UHV converter station in Northwest China with technical support

    Systematically Prognostic Analyses of Gastric Cancer Patients with Ovarian Metastasis

    No full text
    Ovarian metastasis of gastric cancer indicates that the disease has reached the late stage and the opportunity for radical surgery is restricted. However, the clinical characteristics and prognosis of patients with gastric cancer ovarian metastasis (GCOM) remain to be illustrated. Here, we retrieved the information of 780 GCOM cases from the Surveillance, Epidemiology, and End Results (SEERs) database and analyzed their clinicopathological characteristics as well as their survival. According to our data, most GCOM patients showed poor pathological differentiation, advanced T and N stages. The prognostic factors include patients’ age, tumor size, surgical resection, and chemotherapy treatment. Of note, the marriage status was also identified as an independent prognostic factor. Besides the identification of prognostic factors, we established nomograms to help predict the overall survival and cancer-specific survival of GCOM, respectively

    Intra-annual land cover mapping and dynamics analysis with dense satellite image time series: a spatiotemporal cube based spatiotemporal contextual method

    No full text
    Land covers provide essential information for understanding and detecting ecosystem, resources, and environmental dynamics. However, they are generally mapped at coarser temporal scales to study the inter-annual changes, while scant attention has been paid to map intra-annual land cover dynamics at finer temporal scales. Moreover, existing studies are still limited in intra-annual land cover mapping with dense satellite image time series (SITS). Accordingly, this study proposed a novel approach to accurately classify dense SITS for mapping intra-annual land cover dynamics. First, dense SITS is segmented at multiple spatiotemporal scales to generate optimal spatiotemporal cubes (ST-cubes), which are chosen as classification units. Second, the ST-cubes based on spectral, textural, spatial, and temporal features are integratively defined and employed in SITS classification. Third, the spatiotemporal context is modeled by a spatiotemporally extended conditional random field model that measures both spatiotemporal features and semantic correlation between geographic objects. Finally, the proposed method is applied to map the intra-annual land cover dynamics. Comparative experiments of SITS classification are carried out between our method and three existing competitors in a suburban area in Beijing, China, with a dense Sentinel-2 SITS. Moreover, based on the classification results, we analyzed the quantitative intra-annual dynamics of land cover. The result shows that our approach achieves significant improvements in classification accuracy over existing methods, indicating the effectiveness and superiority of the proposed method in mapping intra-annual land cover dynamics with dense SITS

    Design, analysis, and testing of a flexure-based vibration-assisted polishing device

    No full text
    A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response

    Development of a novel three degrees-of-freedom rotary vibration-assisted micropolishing system based on piezoelectric actuation

    Get PDF
    The limited degrees of freedom (DOF) and movement form of the compliant vibration-assisted processing device are inherent constraints of the polishing technique. In this paper, a concept of a 3-DOF rotary vibration-assisted micropolishing system (3D RVMS) is proposed and demonstrated. The 3-DOF means the proposed vibration-assisted polishing device (VPD) is driven by three piezo-electric (PZT) actuators. Compared with the current vibration-assisted polishing technology which generates a trajectory with orthogonal actuators or parallel actuators, a novel 3-DOF piezoelectrically actuated VPD was designed to enable the workpiece to move along the rotational direction. Meanwhile, the proposed VPD can deliver large processing stoke in mrad scale and can be operated at a flexible non-resonant mode. A matrix-based compliance modeling method was adopted for calculating the compliance and amplification ratio of the VPD. Additionally, the dynamic and static properties of the developed VPD were verified using finite element analysis. Then, the VPD was manufactured and experimentally tested to investigate its practical performance. Finally, various polished surfaces which used silicon carbide (SiC) ceramic as workpiece material were uniformly generated by the high-performance 3D RVMS. Compared with a nonvibration polishing system, surface roughness was clearly improved by introducing rotary vibration-assisted processing. Both the analysis and experiments verified the effectiveness of the present 3D RVMS for micro-machining surfaces

    Vibration-Assisted Roll-Type Polishing System Based on Compliant Micro-Motion Stage

    Get PDF
    This paper aims to create a high-quality surface based on the linear contact material removal mechanism. For this paper, a piezo-driven, flexure-based micro-motion stage was developed for the vibration-assisted roll-type precision polishing system. Meanwhile, the compliance matrix method was employed to establish the amplification ratio and compliance model of the flexure mechanism. The dimensions of the mechanism were optimized using the grey wolves optimization (GWO) algorithm, aiming to maximize the natural frequencies. Using the optimal parameters, the established models for the mechanical performance evaluation of the flexure stage were verified with the finite-element method. Through closed-loop test, it was proven that the proposed micro-motion stage performs well in positioning micro motions. Finally, high quality surface using silicon carbide (SiC) ceramic with 36 nm Sa was generated by the independently developed vibration-assisted roll-type polishing machine to validate the performance of the established polishing system

    A novel wheel‐type vibration‐magnetorheological compound finishing method

    No full text
    Magnetorheological fnishing (MRF) is an important technique to achieve the surface precision of difcult-to-cut materials. In this paper, a wheel-type vibration-magnetorheological compound fnishing is proposed in terms of reducing the unidirectional scratch caused by the wheel-type magnetorheological fnishing tool and further improving the convergence rate of surface roughness. The vibration-magnetorheological coupling was realized through utilizing designed magnetorheological fnishing (MRF) wheel and a nonresonant vibrational device (NRVD). Through the theoretical and experimental analysis, the surface roughness has been verifed improved through increasing the normal and tangential forces, which are associated with introducing 2D vibration. The fow and viscoelastic models of the MRP fuid were established based on hydrodynamic lubrication and viscoelasticity theories. Finally, the feasibility of the proposed fnishing method was verifed by the results of improving surface roughness through designing reasonable processing experiment

    Hepatocyte growth factor protects pulmonary endothelial barrier against oxidative stress and mitochondria-dependent apoptosis

    No full text
    Abstract. Background:. Pulmonary microvascular endothelial cells (PMVECs) were not complex, and the endothelial barrier was destroyed in the pathogenesis progress of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Previous studies have demonstrated that hepatocyte growth factor (HGF), which was secreted by bone marrow mesenchymal stem cells, could decrease endothelial apoptosis. We investigated whether mTOR/STAT3 signaling acted in HGF protective effects against oxidative stress and mitochondria-dependent apoptosis in lipopolysaccharide (LPS)-induced endothelial barrier dysfunction and ALI mice. Methods:. In our current study, we introduced LPS-induced PMEVCs with HGF treatment. To investigate the effects of mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway in endothelial oxidative stress and mitochondria-dependent apoptosis, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 were, respectively, used to inhibit mTOR/STAT3 signaling. Moreover, lentivirus vector-mediated mTORC1 (Raptor) and mTORC2 (Rictor) gene knockdown modifications were introduced to evaluate mTORC1 and mTORC1 pathways. Calcium measurement, reactive oxygen species (ROS) production, mitochondrial membrane potential and protein, cell proliferation, apoptosis, and endothelial junction protein were detected to evaluate HGF effects. Moreover, we used the ALI mouse model to observe the mitochondria pathological changes with an electron microscope in vivo. Results:. Our study demonstrated that HGF protected the endothelium via the suppression of ROS production and intracellular calcium uptake, which lead to increased mitochondrial membrane potential (JC-1 and mitochondria tracker green detection) and specific proteins (complex I), raised anti-apoptosis Messenger Ribonucleic Acid level (B-cell lymphoma 2 and Bcl-xL), and increased endothelial junction proteins (VE-cadherin and occludin). Reversely, mTOR inhibitor rapamycin and STAT3 inhibitor S3I-201 could raise oxidative stress and mitochondria-dependent apoptosis even with HGF treatment in LPS-induced endothelial cells. Similarly, mTORC1 as well as mTORC2 have the same protective effects in mitochondria damage and apoptosis. In in vivo experiments of ALI mouse, HGF also increased mitochondria structural integrity via the mTOR/STAT3 pathway. Conclusion:. In all, these reveal that mTOR/STAT3 signaling mediates the HGF suppression effects to oxidative level, mitochondria-dependent apoptosis, and endothelial junction protein in ARDS, contributing to the pulmonary endothelial survival and barrier integrity
    corecore