15 research outputs found

    Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 <it>japonica </it>and 1,260 <it>indica </it>sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related <it>cis</it>-elements.</p> <p>Results</p> <p>There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as <it>GA2ox, SAP15</it>, and <it>Chitinase III</it>, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A <it>cis</it>-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment.</p> <p>Conclusions</p> <p>Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate <it>cis</it>-element for drought responsiveness, is a very useful resource for the functional dissection of the molecular mechanism in rice responding to environment stress.</p

    Dachengqi Decoction Attenuates Inflammatory Response via Inhibiting HMGB1 Mediated NF-&#954;B and P38 MAPK Signaling Pathways in Severe Acute Pancreatitis

    No full text
    Background/Aims: Severe acute pancreatitis (SAP) is a sudden inflammation of the pancreas. The traditional Chinese medicine formula Dachengqi decoction (DCQD) is proven to be beneficial in the comprehensive treatment for pancreatitis patients in clinical practice. However, the molecular mechanism of DCQD on SAP remains unclear. High mobility group box 1(HMGB1) that functions as a damage-associated molecular pattern molecule (DAMP) has attracted much interest. Methods: In this study, we used lipopolysaccharide (LPS) and cerulein to induce severe acute pancreatitis in C57BL/6 mice with subsequent administration with low, medium and high dose (2.3 g/kg, 7 g/kg and 21 g/kg, respectively) of DCQD. Results: DCQD treatment improved the pathological score and decreased serum amylase and lipase in a dose-dependent manner. In addition, it suppressed the immune cell-induced secretion of HMGB1 and its translocation from the nucleus to the cytoplasm, thus repressing the expression of IL-6 and TNF-α. Further, pretreatment with DCQD decreased responses of TLRs, and suppressed the activation of NF-kB and p38 MAPK pathway. Conclusion: Decreasing the secretion of HMGB1 could reduce pro-inflammatory cytokines, which may help cutting down the risks of development from localized pathological changes to a systemic inflammatory response syndrome and even lead to multiple organ failure

    Right, but not left, posterior superior temporal gyrus is causally involved in vocal feedback control

    No full text
    The posterior superior temporal gyrus (pSTG) has been implicated in the integration of auditory feedback and motor system for controlling vocal production. However, the question as to whether and how the pSTG is causally involved in vocal feedback control is currently unclear. To this end, the present study selectively stimulated the left or right pSTG with continuous theta burst stimulation (c-TBS) in healthy participants, then used event-related potentials to investigate neurobehavioral changes in response to altered auditory feedback during vocal pitch regulation. The results showed that, compared to control (vertex) stimulation, c-TBS over the right pSTG led to smaller vocal compensations for pitch perturbations accompanied by smaller cortical N1 and larger P2 responses. Enhanced P2 responses received contributions from the right-lateralized temporal and parietal regions as well as the insula, and were significantly correlated with suppressed vocal compensations. Surprisingly, these effects were not found when comparing c-TBS over the left pSTG with control stimulation. Our findings provide evidence, for the first time, that supports a causal relationship between right, but not left, pSTG and auditory-motor integration for vocal pitch regulation. This lends support to a right-lateralized contribution of the pSTG in not only the bottom-up detection of vocal feedback errors but also the involvement of driving motor commands for error correction in a top-down manner
    corecore