80 research outputs found
Understory species composition mediates soil greenhouse gas fluxes by affecting bacterial community diversity in boreal forests
IntroductionPlant species composition in forest ecosystems can alter soil greenhouse gas (GHG) budgets by affecting soil properties and microbial communities. However, little attention has been paid to the forest types characterized by understory vegetation, especially in boreal forests where understory species contribute significantly to carbon and nitrogen cycling.MethodIn the present study, soil GHG fluxes, soil properties and bacterial community, and soil environmental conditions were investigated among three types of larch forest [Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL), and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL)] in the typical boreal region of northeast China to explore whether the forest types characterized by different understory species can affect soil GHG fluxes.ResultsThe results showed that differences in understory species significantly affected soil GHG fluxes, properties, and bacterial composition among types of larch forest. Soil CO2 and N2O fluxes were significantly higher in LL (347.12 mg m−2 h−1 and 20.71 μg m−2 h−1) and RL (335.54 mg m−2 h−1 and 20.73 μg m−2 h−1) than that in SLL (295.58 mg m−2 h−1 and 17.65 μg m−2 h−1), while lower soil CH4 uptake (−21.07 μg m−2 h−1) were found in SLL than in RL (−35.21 μg m−2 h−1) and LL (−35.85 μg m−2 h−1). No significant differences between LL and RL were found in soil CO2, CH4, and N2O fluxes. Soil bacterial composition was mainly dominated by Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi among the three types of larch forest, while their abundances differed significantly. Soil environmental variables, soil properties, bacterial composition, and their interactions significantly affected the variations in GHG fluxes with understory species. Specifically, structural equation modeling suggested that soil bacterial composition and temperature had direct close links with variations in soil GHG fluxes among types of larch forest. Moreover, soil NO3−−N and NH4+ − N content also affected soil CO2, CH4, and N2O fluxes indirectly, via their effects on soil bacterial composition.DiscussionOur study highlights the importance of understory species in regulating soil GHG fluxes in boreal forests, which furthers our understanding of the role of boreal forests in sustainable development and climate change mitigation
Increased Litter Greatly Enhancing Soil Respiration in Betula platyphylla Forests of Permafrost Region, Northeast China
The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.</jats:p
Increased Litter Greatly Enhancing Soil Respiration in Betula platyphylla Forests of Permafrost Region, Northeast China
The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China
Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China
Studying carbon and nitrogen stocks in different types of larch forest ecosystems is of great significance for assessing the carbon sink capacity and nitrogen level in larch forests. To evaluate the effects of the differences of forest type on the carbon and nitrogen stock capacity of the larch forest ecosystem, we selected three typical types of larch forest ecosystems in the northern part of Daxing’an Mountains, which were the Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL) and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL), to determine the carbon and nitrogen stocks in the vegetation (trees and understories), litter and soil. Results showed that there were significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems, showing a sequence of SLL (288.01 Mg·ha−1 and 25.19 Mg·ha−1) > LL (176.52 Mg·ha−1 and 14.85 Mg·ha−1) > RL (153.93 Mg·ha−1 and 10.00 Mg·ha−1) (P < 0.05). The largest proportions of carbon and nitrogen stocks were found in soils, accounting for 83.20%, 72.89% and 64.61% of carbon stocks and 98.61%, 97.58% and 96.00% of nitrogen stocks in the SLL, LL and RL, respectively. Also, it was found that significant differences among the three types of larch forest ecosystems in terms of soil carbon and nitrogen stocks (SLL > LL > RL) (P < 0.05) were the primary reasons for the differences in the ecosystem carbon and nitrogen stocks. More than 79% of soil carbon and 51% of soil nitrogen at a depth of 0–100 cm were stored in the upper 50 cm of the soil pool. In the vegetation layer, due to the similar tree biomass carbon and nitrogen stocks, there were no significant differences in carbon and nitrogen stocks among the three types of larch forest ecosystems. The litter carbon stock in the SLL was significantly higher than that in the LL and RL (P < 0.05), but no significant differences in nitrogen stock were found among them (P > 0.05). These findings suggest that different forest types with the same tree layer and different understory vegetation can greatly affect the carbon and nitrogen stock capacity of the forest ecosystem. This indicates that understory vegetation may have significant effects on the carbon and nitrogen stocks in soil and litter, which highlights the need to consider the effects of understory in future research into the carbon and nitrogen stock capacity of forest ecosystems.</jats:p
How Potential Evapotranspiration Regulates the Response of Canopy Transpiration to Soil Moisture and Leaf Area Index of the Boreal Larch Forest in China
Transpiration is a critical component of the hydrological cycle in the terrestrial forest ecosystem. However, how potential evapotranspiration regulates the response of canopy transpiration to soil moisture and leaf area index of the boreal larch forest in China has rarely been evaluated. The present study was conducted in the larch (Larix gmelinii (Rupr.) Rupr.) forest, which is a typical boreal forest in China. The canopy transpiration was measured using sap flow techniques from May to September in 2021 and simultaneously observing the meteorological variables, leaf area index (LAI) and soil moisture (SWC). The results showed that there were significant differences in canopy transpiration of Larix gmelinii among the months. The correlation and regression analysis indicated that canopy transpiration was mainly influenced by potential evapotranspiration (PET), while the effect of soil moisture on canopy transpiration was lowest compared with other environmental factors. Furthermore, our results revealed that the effect of PET on canopy transpiration was not regulated by soil moisture when soil moisture exceeded 0.2 cm3 cm−3. More importantly, under the condition of sufficient soil moisture, it was demonstrated that the response of canopy transpiration to leaf area index was limited when PET exceeded 9 mm/day. These results provide valuable implications for supporting forest management and water resource utilization in the boreal forest ecosystem under the context of global warming.</jats:p
Short-Term Litter Manipulations have Strong Impact on Soil Nitrogen Dynamics in Larix gmelinii Forest of Northeast China
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests, which substantially impacts soil nitrogen (N) and nutrient cycling. However, how these soil processes respond to the litter manipulation is complex and poorly understood, especially in the N-limiting boreal forest. We aimed to examine how soil N dynamics respond to litter manipulations in a boreal larch forest. A litter manipulation experiment including control, litter exclusion, and litter addition was performed in the Larix gmelinii forest on the north of the Daxing’an Mountains in China. Monthly soil inorganic N, microbial biomass and the rate of net N mineralization in both 0–10 cm and 10–20 cm layers, and N2O flux were analyzed from May 2018 to October 2018. In 0–20 cm soil layer the average soil inorganic N contents, microbial biomass N (MBN) contents, the rate of net N mineralization (Rmin), and the soil N2O emission in the litter addition plot were approximately 40.58%, 54.16%, 128.57%, and 38.52% greater, respectively than those in the control. While litter exclusion reduced those indexes about 29.04%, 19.84%, 80.98%, and 31.45%, respectively. Compared with the dynamics of the 10–20 cm soil layer, the N dynamics in 0–10 cm soil were more sensitive to litter manipulation. Rmin and N2O emissions were significantly correlated with MBN in most cases. Our results highlight the short-term effects of litter manipulations on soil N dynamics, which suggests that the influence of litter on soil N process should be considered in the future defoliation management of the boreal larch forest.</jats:p
Short-Term Litter Manipulations have Strong Impact on Soil Nitrogen Dynamics in Larix gmelinii Forest of Northeast China
Changes in above-ground litterfall can influence below-ground biogeochemical processes in forests, which substantially impacts soil nitrogen (N) and nutrient cycling. However, how these soil processes respond to the litter manipulation is complex and poorly understood, especially in the N-limiting boreal forest. We aimed to examine how soil N dynamics respond to litter manipulations in a boreal larch forest. A litter manipulation experiment including control, litter exclusion, and litter addition was performed in the Larix gmelinii forest on the north of the Daxing’an Mountains in China. Monthly soil inorganic N, microbial biomass and the rate of net N mineralization in both 0–10 cm and 10–20 cm layers, and N2O flux were analyzed from May 2018 to October 2018. In 0–20 cm soil layer the average soil inorganic N contents, microbial biomass N (MBN) contents, the rate of net N mineralization (Rmin), and the soil N2O emission in the litter addition plot were approximately 40.58%, 54.16%, 128.57%, and 38.52% greater, respectively than those in the control. While litter exclusion reduced those indexes about 29.04%, 19.84%, 80.98%, and 31.45%, respectively. Compared with the dynamics of the 10–20 cm soil layer, the N dynamics in 0–10 cm soil were more sensitive to litter manipulation. Rmin and N2O emissions were significantly correlated with MBN in most cases. Our results highlight the short-term effects of litter manipulations on soil N dynamics, which suggests that the influence of litter on soil N process should be considered in the future defoliation management of the boreal larch forest
Assessments of Impacts of Climate and Forest Change on Water Resources Using SWAT Model in a Subboreal Watershed in Northern Da Hinggan Mountains
Water resources from rivers are essential to humans. The discharge of rivers is demonstrated to be significantly affected by climate change in the literature, particularly in the boreal and subboreal climate zones. The Da Hinggan Mountains in subboreal northeast China form the headwaters of the Heilongjiang River and the Nenjiang River, which are important water resources for irrigation of downstream agriculture and wetlands. In this study, long-term (44 years) hydrologic, climate and forest dynamics data from the Tahe were analyzed using the soil and water assessment tool (SWAT) model to quantify the effects of climate and forest change on runoff depth. Meanwhile, downscaled precipitation and temperature predictions that arose from global climate models (GCMs) under four representative concentration pathways (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) were forced using the SWAT model to investigate the climate change impacts on the Tahe River flows in the future. The results indicated that compared with the 1972–1982 period, the forest biomass in the 1984–1994 period was reduced by 17.6%, resulting in an increase of 16.6% in mean annual runoff depth. On the contrary, with reforestation from the 1995–2005 period to the 2006–2016 period, the mean forest biomass was increased by 9.8%, resulting in the mean runoff depth reduction of 11.9%. The tree species composition shift reduced mean annual runoff depth of 13.3% between the 1984–1994 period and the 2006–2016 period. Compared with base years (2006–2016), projections of GCM in the middle of the 21st century indicated that both mean annual temperature and precipitation were expected to increase by −0.50 °C and 43 mm under RCP 2.6, 0.38 °C and 23 mm under RCP 4.5, 0.67 °C and 36 mm under RCP 6.0 and 1.00 °C and 10 mm under RCP 8.5. Simulated results of the SWAT model showed that annual runoff depth would increase by 18.1% (RCP 2.6), 11.8% (RCP 4.5), 23.6% (RCP 6.0), and 11.5% (RCP 8.5), compared to the base years. Such increased runoff was mainly attributed to the increase in April, July, August, September and October, which were consistent with the precipitation prediction. We concluded that the future climate change will increase the water resources from the river, thereby offsetting the possible decline in runoff caused by the forest recovery. The findings of this study might be useful for understanding the impacts of climate and forest change on runoff and provide a reasonable strategy for managers and planners to mitigate the impact of future climate change on water resources in the subboreal forested watersheds.</jats:p
Assessing the relative contribution of increased forest cover to decreasing river runoff in two boreal forested watersheds of Northeastern China
- …
