123 research outputs found

    Preparation of ZnO-Zn 2

    Get PDF
    Ti-doped ZnO sol-composite films were prepared on the glass substrate by the two-step sol-gel technique. X-ray diffraction, Uv-Vis spectrophotometer, and FS spectrum of composite films were used to help make structure characterization and optical performance testing. The results showed that the composite was a mixture of ZnO + Zn2TiO4. Because of synergistic effect of both semiconductor oxides, composite films had a wide range of spectral response in the visible region, and the absorption band edge was about 510 nm, and the Green Belt of composite films luminous significantly enhanced. Photocatalytic oxidation experiments showed that using the composite films treatment (16.5 ml, l0 mg/L methyl orange aqueous solution)/cm2, the decolorization rate of methyl-orange was 90% after 3 hours irradiation

    Preparation of ZnO-Zn 2 TiO 4 Sol Composite Films and Its Photocatalytic Activities

    Get PDF
    Ti-doped ZnO sol-composite films were prepared on the glass substrate by the two-step sol-gel technique. X-ray diffraction, Uv-Vis spectrophotometer, and FS spectrum of composite films were used to help make structure characterization and optical performance testing. The results showed that the composite was a mixture of ZnO + Zn 2 TiO 4 . Because of synergistic effect of both semiconductor oxides, composite films had a wide range of spectral response in the visible region, and the absorption band edge was about 510 nm, and the Green Belt of composite films luminous significantly enhanced. Photocatalytic oxidation experiments showed that using the composite films treatment (16.5 ml, l0 mg/L methyl orange aqueous solution)/cm 2 , the decolorization rate of methyl-orange was 90% after 3 hours irradiation

    Performance of artificial intelligence in predicting the prognossis of severe COVID-19: a systematic review and meta-analysis

    Get PDF
    BackgroundCOVID-19-induced pneumonia has become a persistent health concern, with severe cases posing a significant threat to patient lives. However, the potential of artificial intelligence (AI) in assisting physicians in predicting the prognosis of severe COVID-19 patients remains unclear.MethodsTo obtain relevant studies, two researchers conducted a comprehensive search of the PubMed, Web of Science, and Embase databases, including all studies published up to October 31, 2023, that utilized AI to predict mortality rates in severe COVID-19 patients. The PROBAST 2019 tool was employed to assess the potential bias in the included studies, and Stata 16 was used for meta-analysis, publication bias assessment, and sensitivity analysis.ResultsA total of 19 studies, comprising 26 models, were included in the analysis. Among them, the models that incorporated both clinical and radiological data demonstrated the highest performance. These models achieved an overall sensitivity of 0.81 (0.64–0.91), specificity of 0.77 (0.71–0.82), and an overall area under the curve (AUC) of 0.88 (0.85–0.90). Subgroup analysis revealed notable findings. Studies conducted in developed countries exhibited significantly higher predictive specificity for both radiological and combined models (p < 0.05). Additionally, investigations involving non-intensive care unit patients demonstrated significantly greater predictive specificity (p < 0.001).ConclusionThe current evidence suggests that artificial intelligence prediction models show promising performance in predicting the prognosis of severe COVID-19 patients. However, due to variations in the suitability of different models for specific populations, it is not yet certain whether they can be fully applied in clinical practice. There is still room for improvement in their predictive capabilities, and future research and development efforts are needed.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/ with the Unique Identifier CRD42023431537

    Manganese oxide electrode with excellent electrochemical performance for sodium ion batteries by pre-intercalation of K and Na ions

    Full text link
    Materials with a layered structure have attracted tremendous attention because of their unique properties. The ultrathin nanosheet structure can result in extremely rapid intercalation/de-intercalation of Na ions in the charge-discharge progress. Herein, we report a manganese oxide with pre-intercalated K and Na ions and having flower-like ultrathin layered structure, which was synthesized by a facile but efficient hydrothermal method under mild condition. The pre-intercalation of Na and K ions facilitates the access of electrolyte ions and shortens the ion diffusion pathways. The layered manganese oxide shows ultrahigh specific capacity when it is used as cathode material for sodium-ion batteries. It also exhibits excellent stability and reversibility. It was found that the amount of intercalated Na ions is approximately 71% of the total charge. The prominent electrochemical performance of the manganese oxide demonstrates the importance of design and synthesis of pre-intercalated ultrathin layered materials

    A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

    Get PDF
    Graphene oxide (GO) was found to effectively enhance the selectivity of aggregation-induced emission (AIE) biosensors, and a new method based on GO and AIE molecules was proposed to detect bovine serum albumin (BSA) with high sensitivity and selectivity.National Natural Science Foundation of China[20974084]; NCET[NCET-08-0411]; National Fundamental Key Research Program[2011CB932702

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Physiological and Proteomic Responses of Dairy Buffalo to Heat Stress Induced by Different Altitudes

    No full text
    Buffalo are mainly distributed in low-altitude (LA), medium-altitude (MA), and high-altitude (HA) regions characterised by different thermal and oxygen environments in Yunnan province, China. Due to black skin, sparse hair, and the low density of skin sweat glands, buffalo are more sensitive to heat stress. Here, we used data-independent acquisition (DIA) proteomics to reveal a broad spectrum of proteins that play roles in adaptation to the heat stress of buffalo raised at low altitude or hypoxia at high altitude. LA buffalo showed higher body temperatures than MA- and HA buffalo, and HA buffalo had higher levels of GSH and SOD and lower levels of ROS compared to LA and MA buffalo. In 33 samples, 8476 peptides corresponding to 666 high-confidence proteins were detected. The levels of circulating complement proteins in the immune pathways were lower in LA and MA buffalo than in HA buffalo. There were higher levels of alpha-1 acid glycoprotein in LA buffalo than in MA and HA buffalo. Relative to MA buffalo, levels of blood oxygen delivery proteins were higher in LA and HA buffalo. A higher abundance of apolipoproteins was detected in LA and MA buffalo than in HA buffalo. In summary, buffalo adopted similar adaptation strategies to oxidative stress induced by heat stress or hypoxia, including immunological enhancement, high efficiency of blood oxygen delivery, and the inhibition of lipid oxidation
    corecore