55 research outputs found

    Structural and Maturational Covariance in Early Childhood Brain Development

    Get PDF
    Brain structural covariance networks (SCNs) composed of regions with correlated variation are altered in neuropsychiatric disease and change with age. Little is known about the development of SCNs in early childhood, a period of rapid cortical growth. We investigated the development of structural and maturational covariance networks, including default, dorsal attention, primary visual and sensorimotor networks in a longitudinal population of 118 children after birth to 2 years old and compared them with intrinsic functional connectivity networks. We found that structural covariance of all networks exhibit strong correlations mostly limited to their seed regions. By Age 2, default and dorsal attention structural networks are much less distributed compared with their functional maps. The maturational covariance maps, however, revealed significant couplings in rates of change between distributed regions, which partially recapitulate their functional networks. The structural and maturational covariance of the primary visual and sensorimotor networks shows similar patterns to the corresponding functional networks. Results indicate that functional networks are in place prior to structural networks, that correlated structural patterns in adult may arise in part from coordinated cortical maturation, and that regional co-activation in functional networks may guide and refine the maturation of SCNs over childhood development

    Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    Get PDF
    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55 approximately 90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18 approximately 96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5 approximately 18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness.published_or_final_versio

    The Neuroanatomical Basis of Two Subcomponents of Rumination: A VBM Study

    Get PDF
    Rumination is a trait that includes two subcomponents, namely brooding and reflective pondering, respectively construed as maladaptive and adaptive response styles to negative experiences. Existing evidence indicates that rumination in general is associated with structural and functional differences in the anterior cingulate cortex (ACC) and the dorsal lateral prefrontal cortex (DLPFC). However, conclusive evidence on the specific neural structural basis of each of the two subcomponents is lacking. In this voxel-based morphometry study, we investigated the independent and specific neural structural basis of brooding and reflective pondering in 30 healthy young adults, who belonged to high or low brooding or reflective pondering groups. Consistent with past research, modest but significant positive correlation was found between brooding and reflective pondering. When controlling for reflective pondering, high-brooding group showed increased gray matter volumes in the left DLPFC and ACC. Further analysis on extracted gray matter values showed that gray matter of the same DLPFC and ACC regions also showed significant negative effects of reflective pondering. Taken together, our findings indicate that the two subcomponents of rumination might share some common processes yet also have distinct neural basis. In view of the significant roles of the left DLPFC and ACC in attention and self-related emotional processing/regulation, our findings provide insight into how the potentially shared and distinct cognitive, affective and neural processes of brooding and reflective pondering can be extended to clinical populations to further elucidate the neurobehavioral relationships between rumination and prefrontal abnormality

    Knowledge-Guided Robust MRI Brain Extraction for Diverse Large-Scale Neuroimaging Studies on Humans and Non-Human Primates

    Get PDF
    Accurate and robust brain extraction is a critical step in most neuroimaging analysis pipelines. In particular, for the large-scale multi-site neuroimaging studies involving a significant number of subjects with diverse age and diagnostic groups, accurate and robust extraction of the brain automatically and consistently is highly desirable. In this paper, we introduce population-specific probability maps to guide the brain extraction of diverse subject groups, including both healthy and diseased adult human populations, both developing and aging human populations, as well as non-human primates. Specifically, the proposed method combines an atlas-based approach, for coarse skull-stripping, with a deformable-surface-based approach that is guided by local intensity information and population-specific prior information learned from a set of real brain images for more localized refinement. Comprehensive quantitative evaluations were performed on the diverse large-scale populations of ADNI dataset with over 800 subjects (55∼90 years of age, multi-site, various diagnosis groups), OASIS dataset with over 400 subjects (18∼96 years of age, wide age range, various diagnosis groups), and NIH pediatrics dataset with 150 subjects (5∼18 years of age, multi-site, wide age range as a complementary age group to the adult dataset). The results demonstrate that our method consistently yields the best overall results across almost the entire human life span, with only a single set of parameters. To demonstrate its capability to work on non-human primates, the proposed method is further evaluated using a rhesus macaque dataset with 20 subjects. Quantitative comparisons with popularly used state-of-the-art methods, including BET, Two-pass BET, BET-B, BSE, HWA, ROBEX and AFNI, demonstrate that the proposed method performs favorably with superior performance on all testing datasets, indicating its robustness and effectiveness

    White Matter Heritability Using Diffusion Tensor Imaging in Neonatal Brains

    Get PDF
    Understanding genetic and environmental effects on white matter development in the first years of life is of great interest, as it provides insights into the etiology of neurodevelopmental disorders. In this study, the genetic and environmental effects on white matter were estimated using data from 173 neonatal twin subjects. Diffusion tensor imaging scans were acquired around 40 days after birth and were non-rigidly registered to a group-specific atlas and parcellated into 98 ROIs. A model of additive genetic, and common and specific environmental variance components was used to estimate overall and regional genetic and environmental contributions to diffusion parameters of fractional anisotropy, radial diffusivity, and axial diffusivity. Correlations between the regional heritability values and diffusion parameters were also examined. Results indicate that individual differences in overall white matter microstructure, represented by the average diffusion parameters over the whole brain, are heritable, and estimates are higher than found in studies in adults. Estimates of genetic and environmental variance components vary considerably across different white matter regions. Significant positive correlations between radial diffusivity heritability and radial diffusivity values are consistent with regional genetic variation being modulated by maturation status in the neonatal brain: the more mature the region is, the less genetic variation it shows. Common environmental effects are present in a few regions that tend to be characterized by low radial diffusivity. Results from the joint diffusion parameter analysis suggest that multivariate modeling approaches might be promising to better estimate maturation status and its relationship with genetic and environmental effects

    Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood

    Get PDF
    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age

    Impact of Sex and Gonadal Steroids on Neonatal Brain Structure

    Get PDF
    There are numerous reports of sexual dimorphism in brain structure in children and adults, but data on sex differences in infancy are extremely limited. Our primary goal was to identify sex differences in neonatal brain structure. Our secondary goal was to explore whether brain structure was related to androgen exposure or sensitivity. Two hundred and ninety-three neonates (149 males) received high-resolution structural magnetic resonance imaging scans. Sensitivity to androgen was measured using the number of cytosine, adenine, guanine (CAG) triplets in the androgen receptor gene and the ratio of the second to fourth digit, provided a proxy measure of prenatal androgen exposure. There was a significant sex difference in intracranial volume of 5.87%, which was not related to CAG triplets or digit ratios. Tensor-based morphometry identified extensive areas of local sexual dimorphism. Males had larger volumes in medial temporal cortex and rolandic operculum, and females had larger volumes in dorsolateral prefrontal, motor, and visual cortices. Androgen exposure and sensitivity had minor sex-specific effects on local gray matter volume, but did not appear to be the primary determinant of sexual dimorphism at this age. Comparing our study with the existing literature suggests that sex differences in cortical structure vary in a complex and highly dynamic way across the human lifespan

    Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection

    Get PDF
    The key to battling the COVID-19 pandemic and its potential aftermath is to develop a variety of vaccines that are efficacious and safe, elicit lasting immunity, and cover a range of SARS-CoV-2 variants. Recombinant viral receptor-binding domains (RBDs) are safe vaccine candidates but often have limited efficacy due to the lack of virus-like immunogen display pattern. Here we have developed a novel virus-like nanoparticle (VLP) vaccine that displays 120 copies of SARS-CoV-2 RBD on its surface. This VLP-RBD vaccine mimics virus-based vaccines in immunogen display, which boosts its efficacy, while maintaining the safety of protein-based subunit vaccines. Compared to the RBD vaccine, the VLP-RBD vaccine induced five times more neutralizing antibodies in mice that efficiently blocked SARSCoV- 2 from attaching to its host receptor and potently neutralized the cell entry of variant SARS-CoV-2 strains, SARS-CoV-1, and SARS-CoV-1-related bat coronavirus. These neutralizing immune responses induced by the VLP-RBD vaccine did not wane during the twomonth study period. Furthermore, the VLP-RBD vaccine effectively protected mice from SARS-CoV-2 challenge, dramatically reducing the development of clinical signs and pathological changes in immunized mice. The VLP-RBD vaccine provides one potentially effective solution to controlling the spread of SARS-CoV-2

    Quantitative tract-based white matter development from birth to age 2 years

    No full text
    journal articleFew large-scale studies have been done to characterize the normal human brain white matter growth in the first years of life. We investigated white matter maturation patterns in major fiber pathways in a large cohort of healthy young children from birth to age two using diffusion parameters fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (RD). Ten fiber pathways, including commissural, association and projection tracts, were examined with tract-based analysis, providing more detailed and continuous spatial developmental patterns compared to conventional ROI based methods. All DTI data sets were transformed to a population specific atlas with a group-wise longitudinal large deformation diffeomorphic registration approach. Diffusion measurements were analyzed along the major fiber tracts obtained in the atlas space. All fiber bundles show increasing FA values and decreasing radial and axial diffusivities during the development in the first two years of life. The changing rates of the diffusion indices are faster in the first year than the second year for all tracts. RD and FA show larger percentage changes in the first and second years than AD. The gender effects on the diffusion measures are small. Along different spatial locations of fiber tracts, maturation does not always follow the same speed. Temporal and spatial diffusion changes near cortical regions are in general smaller than changes in central regions. Overall developmental patterns revealed in our study confirm the general rules of white matter maturation. This work shows a promising framework to study and analyze white matter maturation in a tract-based fashion. Compared to most previous studies that are ROI-based, our approach has the potential to discover localized development patterns associated with fiber tracts of interest
    • …
    corecore