114 research outputs found

    Research Progress on Protein Additives for Enhancing Gel Properties of Meat Products

    Get PDF
    Gelation, an important quality attribute of meat products, significantly influences the appearance, flavor, and texture of meat products. Enhancing gelation in meat products holds immense importance in improving the production process and the quality. The gel properties of meat products are influenced by the content and structure of protein aggregates and the aggregation rate during processing. Protein additives have the potential to partially replace myofibrillar proteins in gelation and emulsification properties, leading to cost reduction, and therefore have attracted much research interest for the development of new meat products and the optimization of the processing technology. This paper summarizes recent studies on the gelation mechanism of myofibrillar proteins, and reviews the properties and applications of the major protein additives as well as recent progress in using protein additives combined with polysaccharide colloids, enzymes or phosphates to enhance the gelation of meat products. This review may serve as a valuable reference for enhancing the quality of gel-type meat products

    Assessing real-world safety concerns of Sacituzumab govitecan: a disproportionality analysis using spontaneous reports in the FDA adverse event reporting system

    Get PDF
    AimThe aim of this study was to identify potential safety concerns associated with Sacituzumab Govitecan (SG), an antibody-drug conjugate targeting trophoblastic cell-surface antigen-2, by analyzing real-world safety data from the largest publicly available worldwide pharmacovigilance database.MethodsAll data obtained from the FDA Adverse Event Reporting System (FAERS) database from the second quarter of 2020 to the fourth quarter of 2022 underwent disproportionality analysis and Bayesian analysis to detect and assess the adverse event signals of SG, considering statistical significance when the lower limit of the 95% CI >1, based on at least 3 reports.ResultsTotal of 1072 cases were included. The main safety signals were blood and lymphatic system disorders [ROR(95CI)=7.23 (6.43-8.14)], gastrointestinal disorders [ROR(95CI)=2.01 (1.81-2.22)], and relative infection adverse events, such as neutropenic sepsis [ROR(95CI)=46.02 (27.15-77.99)] and neutropenic colitis [ROR(95CI)=188.02 (120.09-294.37)]. We also noted unexpected serious safety signals, including large intestine perforation [ROR(95CI)=10.77 (3.47-33.45)] and hepatic failure [ROR(95CI)=3.87 (1.45-10.31)], as well as a high signal for pneumonitis [ROR(95CI)=9.93 (5.75-17.12)]. Additionally, age sub-group analysis revealed that geriatric patients (>65 years old) were at an increased risk of neutropenic colitis [ROR(95CI)=282.05 (116.36-683.66)], neutropenic sepsis [ROR(95CI)=101.11 (41.83-244.43)], acute kidney injury [ROR(95CI)=3.29 (1.36-7.94)], and atrial fibrillation [ROR(95CI)=6.91 (2.86-16.69)].ConclusionThis study provides crucial real-world safety data on SG, complementing existing clinical trial information. Practitioners should identify contributing factors, employ monitoring and intervention strategies, and focus on adverse events like neutropenic sepsis, large intestine perforation, and hepatic failure. Further prospective studies are needed to address these safety concerns for a comprehensive understanding and effective management of associated risks

    A Recombinant Vaccine of H5N1 HA1 Fused with Foldon and Human IgG Fc Induced Complete Cross-Clade Protection against Divergent H5N1 Viruses

    Get PDF
    Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus

    A Multiobjective Brain Storm Optimization Algorithm Based on Decomposition

    No full text
    Brain storm optimization (BSO) algorithm is a simple and effective evolutionary algorithm. Some multiobjective brain storm optimization algorithms have low search efficiency. This paper combines the decomposition technology and multiobjective brain storm optimization algorithm (MBSO/D) to improve the search efficiency. Given weight vectors transform a multiobjective optimization problem into a series of subproblems. The decomposition technology determines the neighboring clusters of each cluster. Solutions of adjacent clusters generate new solutions to update population. An adaptive selection strategy is used to balance exploration and exploitation. Besides, MBSO/D compares with three efficient state-of-the-art algorithms, e.g., NSGAII and MOEA/D, on twenty-two test problems. The experimental results show that MBSO/D is more efficient than compared algorithms and can improve the search efficiency for most test problems

    Nucleosome Organization around Pseudogenes in the Human Genome

    No full text
    Pseudogene, disabled copy of functional gene, plays a subtle role in gene expression and genome evolution. The first step in deciphering RNA-level regulation of pseudogenes is to understand their transcriptional activity. So far, there has been no report on possible roles of nucleosome organization in pseudogene transcription. In this paper, we investigated the effect of nucleosome positioning on pseudogene transcription. For transcribed pseudogenes, the experimental nucleosome occupancy shows a prominent depletion at the regions both upstream of pseudogene start positions and downstream of pseudogene end positions. Intriguingly, the same depletion is also observed for nontranscribed pseudogenes, which is unexpected since nucleosome depletion in those regions is thought to be unnecessary in light of the nontranscriptional property of those pseudogenes. The sequence-dependent prediction of nucleosome occupancy shows a consistent pattern with the experimental data-based analysis. Our results indicate that nucleosome positioning may play important roles in both the transcription initiation and termination of pseudogenes

    Protection of Retina by Mini-Ξ±A in NaIO3-Induced Retinal Pigment Epithelium Degeneration Mice

    No full text
    Background: Studies have shown that mini-Ξ±A can protect retinal pigment epithelium (RPE) cells from apoptosis. However, no in vivo study concerning the anti-apoptotic function of mini-Ξ±A has been conducted yet. Methods: MTT assay, HE staining and TUNEL assay were used to assess levels of cells, and an animal model was established to examine the protective effects of mini-Ξ±A against NaIO3-induced RPE cell apoptosis. Western blot analysis and RT-qPCR were performed to explore the possible mechanism of mini-Ξ±A’s protective function against NaIO3-induced RPE cell apoptosis. Results: Results from in vivo and animal experiments showed that mini-Ξ±A antagonized NaIO3-induced RPE cell apoptosis. Further investigation into how mini-Ξ±A provided protection against NaIO3-induced RPE cell apoptosis showed that mini-Ξ±A reduced NaIO3-induced RPE cell apoptosis and autophagy. In addition, unfolded protein response was also involved in the protective effects of mini-Ξ±A against NaIO3-induced RPE cell apoptosis. Conclusions: mini-Ξ±A can antagonize RPE cell apoptosis induced by NaIO3. A possible mechanism is by inhibition of apoptosis by repressing autophagy and endoplasmic reticulum stress

    FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC

    No full text
    Abstract Background Accumulating evidence suggests that cancer stem cells (CSCs) play a critical role in tumor initiation, progression and therapy, and recent studies have indicated that Forkhead box C1 (FOXC1) is strongly associated with CSCs. This study investigates the regulatory effects of FOXC1 on CSC-like properties in non-small cell lung cancer (NSCLC). Methods We analyzed FOXC1 expression in NSCLC using the Cancer Genome Atlas (TCGA) database on UALCANC and performed survival analyses of NSCLC patients on Human Protein Atlas. CSC-like properties were analyzed based on CSC marker-positive cell population, self-renewal ability, stemness-related gene expression, tumorigenicity and drug resistance. The percentage of CD133+ cells was analyzed by flow cytometric analysis. Self-renewal ability was detected by sphere-formation analysis. Real-time PCR, western blotting and immunohistochemical staining were employed to detect mRNA and protein levels. Tumorigenicity was determined based on a xenograft formation assay, and effects of FOXC1 on drug resistance were assessed by cell viability and apoptosis assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to investigate the binding of FOXC1 to beta-catenin promoter. Results FOXC1 expression was found to be elevated in NSCLC tissues and negatively correlated with patient survival. FOXC1 knockdown reduced CD133+ cell percentage, suppressed self-renewal ability, decreased expression of stemness-related genes (Oct4, NANOG, SOX2 and ABCG2) and inhibited NSCLC cell tumorigenicity in vivo. Moreover, FOXC1 knockdown increased cisplatin and docetaxel sensitivity and reduced gefitinib resistance, whereas FOXC1 overexpression enhanced CSC-like properties. Luciferase reporter and ChIP assays showed beta-catenin to be a direct transcriptional target of FOXC1. Furthermore, overexpression of beta-catenin reversed the CSC-like property inhibition induced by FOXC1 knockdown, and knockdown of beta-catenin attenuated the CSC-like properties induced by FOXC1 overexpression. Conclusions This study demonstrates that FOXC1 induces CSC-like properties in NSCLC by promoting beta-catenin expression. The findings indicate that FOXC1 is a potential molecular target for anti-CSC-based therapies in NSCLC
    • …
    corecore