48 research outputs found

    Precise and label-free tumour cell recognition based on a black phosphorus nanoquenching platform

    Get PDF
    Breast cancer is a type of heterogeneous disease, which manifests as different molecular subtypes due to the complex nature of tumour initiation, progression, and metastasis. Accurate identification of a breast cancer subtype plays crucial roles in breast cancer management. Herein, taking advantage of the efficient quenching properties of black phosphorus nanosheets (BPNSs), in combination with the high specificity of ssDNA (or RNA) aptamer, a fluorometric duplexed assay that is capable of the simultaneous detection of two tumour markers within one run is developed. When mixed with BPNSs, the fluorescence of both FAM and Cy3 labelled aptamers was quenched. The presence of different subtypes of breast cancer cells restored the FAM and Cy3 fluorescence in distinct patterns according to their intrinsic features. The proposed assay can precisely recognise label-free breast cancer subtypes, providing an efficient method for cell type identification and guidance for subsequent breast cancer treatment. The significance of the proposed study is two-fold. First, we provide a simple method for sensitive and specific tumour cell detection; secondly, and more importantly, the proposed dual assay allows precise recognition of tumour cells and thus opens a door for rapid characterization and sorting of a wide range of tumours without using expensive instruments

    Mixed Higher Order Variational Model for Image Recovery

    No full text
    A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV) scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR) and restoration quality

    Location and Recognition Fruit Trees Based on Binocular Stereo Vision

    No full text
    International audienceIn order to improve pesticide utilization rate and reduce the environmental pollution caused by pesticide ground loss, this paper proposes to use binocular vision to recognize the contour and distance information of fruit trees. To improve the recognition accuracy and speed, focusing on the optimization of SIFT stereo matching algorithm. A method for matching the feature points of left and right images base on cosine distance and the vector modulus is proposed. On this basis, two stereo matching algorithms are compared, The accuracy of the Improved SIFT stereo matching algorithm is improved by 1.53%, With this method, the recognition time is almost unchanged, And the stability of depth measurement is analyzed. When the target distance sensor is 180 cm–220 cm, the standard deviation is 1.3592 cm, can meet the requirements of the work

    Exploring the role of aquaporin proteins in the pre-protective action of Sanwei sandalwood decoction from adriamycin-induced chronic heart failure: A mechanistic study

    No full text
    This study employed network pharmacology, molecular docking technology, and modern pharmacological research methods to explore the pre-protective effect and underlying mechanism, Sanwei sandalwood decoction, against Adriamycin-induced Chronic Heart Failure, with a particular focus on the involvement of aquaporins. Additionally, the study highlighted aquaporins as a significant factor, affecting processes such as cell proliferation and response to reactive oxygen species. The results of in vivo experiments demonstrated that the administration of Sanwei sandalwood decoction in rats with chronic heart failure led to an enhancement in the ejection fraction and improved heart ejection function. Additionally, the decoction significantly reduced the serum levels of Creatine Kinase, Creatine Kinase-MB, and N-terminal pro-B-type natriuretic peptide. Furthermore, the relative expression of Aquarporin-1, 4, and 7mRNAs and proteins in the hearts of rats with chronic heart failure was down-regulated upon treatment. Overall, Sanwei sandalwood decoction can have an effective cardioprotective effect in preventing Adriamycin-induced Chronic Heart Failure in rats

    Sound touch elastography of Achilles tendons in patients with type 2 diabetes mellitus versus healthy adults

    No full text
    Abstract Background The studies of the effect of diabetes on the stiffness of Achilles tendon (AT) tissue remain inconclusive, we believe it is necessary to find a reliable method which can be used to detect the stiffness changes of the AT in the diabetic state. The objective of the present study was to investigate the effectiveness of sound touch elastography (STE) as a tool for detecting diabetic Achilles tendinopathy. Methods We conducted a retrospective review of 180 participants, consisting of 82 patients with type 2 diabetes mellitus (T2DM) and 98 healthy adults, who had undergone AT ultrasonography. Young ‘s modulus (E) values of the distal, middle, and proximal segments of bilateral ATs of all participants were measured using STE technique. The E values of each AT segment between the case and control group were compared. Results The E values of the three segments of ATs in T2DM patients were lower than the healthy controls (P < 0.05). In both groups, the E values of the distal segments were lower than those of the middle segments, and the latter were lower than those of the proximal segments (P < 0.05). The E value of each segment of AT was inversely related to FPG, HbA1c, and diabetes duration (P < 0.05). The best cut-off points for the E values of the three segments of the AT for detecting diabetic tendinopathy were 347.44 kPa (AUC, 0.779), 441.57 kPa (AUC, 0.692), and 484.35 kPa (AUC, 0.676), respectively. Conclusion STE can be used as a complementary diagnostic tool for the diagnosis of diabetic Achilles tendinopathy

    Meloxicam, a Selective COX-2 Inhibitor, Mediates Hypoxia-Inducible Factor- (HIF-) 1α Signaling in Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is regarded as a leading cause of cancer-related deaths, and its progression is associated with hypoxia and the induction of hypoxia-inducible factor (HIF). Meloxicam, a selective cyclooxygenase-2 (COX-2) inhibitor, induces cell death in various malignancies. However, the underlying mechanism remains to be elucidated in HCC, especially under hypoxic conditions. The alteration of COX-2 and HIF-1α oncogenicity was evaluated in HCC specimens by tissue microarray. Cell viability, angiogenesis assays, and xenografted nude mice were used to evaluate the effects of meloxicam, along with flow cytometry to detect the cell cycle, apoptosis, and mitochondrial membrane potential (ΔΨm) of HCC. qRT-PCR, Western blotting, immunofluorescence, immunohistochemistry, luciferase assay, and RNAi were carried out to determine the HIF-1α signaling affected by meloxicam. In this study, we showed that meloxicam exerts antiproliferative and antiangiogenesis efficacy in vitro and in vivo and causes disruption of mitochondrial membrane potential (ΔΨm), thus leading to caspase-dependent apoptosis under hypoxic environments. Exposure to meloxicam significantly reduced HIF-1α transcriptional activation and expression through sequestering it in the cytoplasm and accelerating degradation via increasing the von Hippel-Lindau tumor suppressor protein (pVHL) in HCC. These data demonstrated that inhibition of HIF-1α by meloxicam could suppress angiogenesis and enhance apoptosis of HCC cells. This discovery highlights that COX-2 specific inhibitors may be a promising therapy in the treatment of HCC

    Physiology and Proteomic Basis of Lung Adaptation to High-Altitude Hypoxia in Tibetan Sheep

    No full text
    The Tibetan sheep is an indigenous animal of the Tibetan plateau, and after a long period of adaptation have adapted to high-altitude hypoxia. Many physiological changes occur in Tibetan sheep as they adapt to high-altitude hypoxia, especially in the lungs. To reveal the physiological changes and their molecular mechanisms in the lungs of Tibetan sheep during adaptation to high altitudes, we selected Tibetan sheep from three altitudes (2500 m, 3500 m, and 4500 m) and measured blood-gas indicators, observed lung structures, and compared lung proteome changes. The results showed that the Tibetan sheep increased their O2-carrying capacity by increasing the hemoglobin (Hb) concentration and Hematocrit (Hct) at an altitude of 3500 m. While at altitude of 4500 m, Tibetan sheep decreased their Hb concentration and Hct to avoid pulmonary hypertension and increased the efficiency of air-blood exchange and O2 transfer by increasing the surface area of gas exchange and half-saturation oxygen partial pressure. Besides these, some important proteins and pathways related to gas transport, oxidative stress, and angiogenesis identified by proteome sequencing further support these physiology findings, including HBB, PRDX2, GPX1, GSTA1, COL14A1, and LTBP4, etc. In conclusion, the lungs of Tibetan sheep are adapted to different altitudes by different strategies; these findings are valuable for understanding the basis of hypoxic adaptation in Tibetan sheep
    corecore