82 research outputs found

    Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: Selected Resources and Annotations

    Get PDF
    This selection of resources highlights the utility of Unmanned Surface Vehicles (USV) for use in marine spill response. Each entry is followed by a brief summary and evaluation of the source (i.e., the annotation). Most annotations will define the scope of the source, list significant cross references, and identify relevant USV capabilities. There is no attempt to provide actual hypotheses, data, or graphics, especially concerning cited articles published in refereed journals. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Relevance relates to the citation’s presentation of capabilities that improve marine spill response operations. Significant interest involves the use of sensors that characterize the environment to support oil spill cleanup operations. The diversity of resources is especially relevant since no two oil spills are the same owing to the variation in oil types, locations, and weather conditions. The development of USVs for oil spill monitoring, cleanup, and science reduces some of the dependence on expensive ship time

    Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: Selected Resources and Annotations

    Get PDF
    This selection of resources highlights the utility of Unmanned Surface Vehicles (USV) for use in marine spill response. Each entry is followed by a brief summary and evaluation of the source (i.e., the annotation). Most annotations will define the scope of the source, list significant cross references, and identify relevant USV capabilities. There is no attempt to provide actual hypotheses, data, or graphics, especially concerning cited articles published in refereed journals. The purpose of the annotation is to inform the reader of the relevance, accuracy, and quality of the sources cited. Relevance relates to the citation’s presentation of capabilities that improve marine spill response operations. Significant interest involves the use of sensors that characterize the environment to support oil spill cleanup operations. The diversity of resources is especially relevant since no two oil spills are the same owing to the variation in oil types, locations, and weather conditions. The development of USVs for oil spill monitoring, cleanup, and science reduces some of the dependence on expensive ship time

    A Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: White Paper

    Get PDF
    In line with current research thrusts on unmanned systems, the University of New Orleans has formed a collaborative team from industry, academia, and government (e.g., Department of Homeland Security). UNO’s intent is to work with organizations such as the Bureau of Safety and Environmental Enforcement (BSEE) to experiment and demonstrate the potential offered by Unmanned Surface Vessels within the Gulf of Mexico

    A Maritime Advanced Geospatial Intelligence Craft for Oil Spill Response: White Paper

    Get PDF
    In line with current research thrusts on unmanned systems, the University of New Orleans has formed a collaborative team from industry, academia, and government (e.g., Department of Homeland Security). UNO’s intent is to work with organizations such as the Bureau of Safety and Environmental Enforcement (BSEE) to experiment and demonstrate the potential offered by Unmanned Surface Vessels within the Gulf of Mexico

    Topoisomerase I but not thymidylate synthase is associated with improved outcome in patients with resected colorectal cancer treated with irinotecan containing adjuvant chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymidylate synthase (TS) and Topoisomerase I (Topo I) are significant biomarkers in colorectal cancer (CRC). We aimed to study the expression of TS and Topo I in patients with resected CRC who received adjuvant chemotherapy and correlated it with clinical outcome.</p> <p>Methods</p> <p>All patients diagnosed with CRC between 1989 and 2007 and treated with adjuvant chemotherapy within Hellenic Cooperative Oncology Group's (HeCOG) protocols, were identified. Archival paraffin-embedded tumor tissues were used for immunohistochemical detection of TS and Topo I. Immunohistochemistry was performed on tissue microarray slides using monoclonal antibodies against TS and Topo I. The results were correlated with survival (OS) and disease free survival (DFS).</p> <p>Results</p> <p>A cohort of 498 patients with a median age of 61 years and Dukes' stage B (49%) and C (51%) fulfilled the criteria of the study. All patients received adjuvant 5-FU-based chemotherapy, 38% irinotecan-containing. Positive TS and Topo I expression was found in 43% and 48% of cases, respectively. Five-year OS was 74% and DFS was 68%. In univariate analysis no association of TS and Topo I expression with OS and DFS was identified. In multivariate analysis however, Topo I expression was associated with a reduced risk of death (HR = 0.61, 95% CI 0.42-0.88, p = 0.009). In the irinotecan-treated subgroup, those patients who expressed Topo I had a better OS (HR = 0.47, 95% CI 0.23-0.94, p = 0.033).</p> <p>Conclusion</p> <p>Patients with resected CRC expressing Topo I seem to benefit from irinotecan-containing adjuvant chemotherapy. However randomised prospective trials are needed to confirm these results.</p
    • …
    corecore