179 research outputs found
A Re-ranking Model for Dependency Parser with Recursive Convolutional Neural Network
In this work, we address the problem to model all the nodes (words or
phrases) in a dependency tree with the dense representations. We propose a
recursive convolutional neural network (RCNN) architecture to capture syntactic
and compositional-semantic representations of phrases and words in a dependency
tree. Different with the original recursive neural network, we introduce the
convolution and pooling layers, which can model a variety of compositions by
the feature maps and choose the most informative compositions by the pooling
layers. Based on RCNN, we use a discriminative model to re-rank a -best list
of candidate dependency parsing trees. The experiments show that RCNN is very
effective to improve the state-of-the-art dependency parsing on both English
and Chinese datasets
- …