193 research outputs found

    Fantastic Behavior of High-TC Superconductor Junctions: Tunable Superconductivity

    Full text link
    Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over 20 K in transition temperature, has achieved by using electric processes. To our knowledge, this is the first observation that intrinsic property of high TC superconductors superconductivity can be adjusted as tunable functional parameters of devices. The fantastic phenomenon caused by carrier injection was discussed based on a proposed charge carrier self-trapping model and BCS theory.Comment: 5 pages, 4 figure

    Phase structure in the baryon density-dependent quark mass model

    Full text link
    The properties of phase diagram of strange quark matter in equilibrium with hadronic matter at finite temperature are studied, where the quark phase and hadron phase are treated by baryon density-dependent quark mass model and hadron resonance gas model with hard core repulsion factor, respectively. Our results indicate that the strangeness fraction fs, perturbation parameter C, and confinement parameter D have strong influence on the properties of phase diagram and the formation of strangelets, where a large fs, small C and D favor the formation of strangelets. Consider the isentropic expansion process, we found that the initial entropy per baryon is about 5, which gives a large probability for the formation of strangelets. Furthermore, as the strangeness fraction fs and one gluon-exchange interaction strength C decrease and confinement parameter D increases, the reheating effect becomes more significant, reducing the possibility of forming strangelets. The new phase diagram could support a massive compact star with the maximum mass exceeding twice the solar mass and have a significant impact on the mass-radius relationship for hybrid stars

    Strangelets at finite temperature: nucleon emission rates, interface and shell effects

    Full text link
    We investigate the properties of strangelets at finite temperature TT, where an equivparticle model is adopted with both the linear confinement and leading-order perturbative interactions accounted for using density-dependent quark masses. The shell effects are examined by solving the Dirac equations for quarks in the mean-field approximation, which diminish with temperature as the occupation probability of each single-particle levels fixed by the Fermi-Dirac statistics, i.e., shell dampening. Consequently, instead of decreasing with temperature, the surface tension extracted from a liquid-drop formula increases with TT until reaching its peak at Tβ‰ˆ20T\approx 20-40 MeV with vanishing shell corrections, where the formula roughly reproduces the free energy per baryon of all strangelets. The curvature term, nevertheless, decreases with TT despite the presence of shell effects. The neutron and proton emission rates are fixed microscopically according to the external nucleon gas densities that are in equilibrium with strangelets, which generally increase with TT (≲50\lesssim 50 MeV) for stable strangelets but decrease for those that are unstable against nucleon emission at T=0T=0. The energy, free energy, entropy, charge-to-mass ratio, strangeness per baryon, and root-mean-square radius of Ξ²\beta-stable strangelets obtained with various parameter sets are presented as well. The results indicated in this work are useful for understanding the products of binary compact star mergers and heavy-ion collisions

    Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides

    Get PDF
    The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580-1650 nm)

    (E)-Nβ€²-(2,5-DimethoxyΒ­benzylΒ­idene)-2,4-dihydroxyΒ­benzohydrazide

    Get PDF
    In the title compound, C16H16N2O5, the dihedral angle between the two benzene rings is 4.2β€…(2)Β° and an intraΒ­molecular Oβ€”Hβ‹―O hydrogen bond generates an S(6) ring. In the crystal, molΒ­ecules are linked into layers lying parallel to the bc plane by Oβ€”Hβ‹―O and Nβ€”Hβ‹―O hydrogen bonds

    Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers

    Get PDF
    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury

    Immunoproteomic Analysis of Human Serological Antibody Responses to Vaccination with Whole-Cell Pertussis Vaccine (WCV)

    Get PDF
    BACKGROUND: Pertussis (whooping cough) caused by Bordetella pertussis (B.p), continues to be a serious public health threat. Vaccination is the most economical and effective strategy for preventing and controlling pertussis. However, few systematic investigations of actual human immune responses to pertussis vaccines have been performed. Therefore, we utilized a combination of two-dimensional electrophoresis (2-DE), immunoblotting, and mass spectrometry to reveal the entire antigenic proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune system as a first step toward evaluating the repertoire of human humoral immune responses against WCV. METHODOLOGY/PRINCIPAL FINDINGS: Immunoproteomic profiling of total membrane enriched proteins and extracellular proteins of Chinese WCV strain 58003 identified a total of 30 immunoreactive proteins. Seven are known pertussis antigens including Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins. Sixteen have been documented to be immunogenic in other pathogens but not in B.p, and the immunogenicity of the last seven proteins was found for the first time. Furthermore, by comparison of the human and murine immunoproteomes of B.p, with the exception of four human immunoreactive proteins that were also reactive with mouse immune sera, a unique group of antigens including more than 20 novel immunoreactive proteins that uniquely reacted with human immune serum was confirmed. CONCLUSIONS/SIGNIFICANCE: This study is the first time that the repertoire of human serum antibody responses against WCV was comprehensively investigated, and a small number of previously unidentified antigens of WCV were also found by means of the classic immunoproteomic strategy. Further research on these newly identified predominant antigens of B.p exclusively against humans will not only remarkably accelerate the development of diagnostic biomarkers and subunit vaccines but also provide detailed insight into human immunity mechanisms against WCV. In particular, this work highlights the heterogeneity of the B.p immunoreactivity patterns of the mouse model and the human host
    • …
    corecore